zoukankan      html  css  js  c++  java
  • CCA学习

    1.CCA的原理。

    https://www.cnblogs.com/pinard/p/6288716.html

    CCA是计算两组数据的相关性并降维到1维,是在两组数据相关性最大的前提下,是通过相关系数来衡量的,降维到1维。

    具体的求解过程那些公式我没有看。

    最后又说到,在数据无法线性表示时,可以使用核CCA,先通过核函数映射到高维空间,再降维到1维。

    2.算法过程

    https://www.zhihu.com/question/52381656

     输出是相关系数、线性表示。

    3.例子

    https://blog.csdn.net/qq_29831163/article/details/89639661

    它的基本 思想是仿照PCA中把多变量与多变量之间的相关化为两个变量之间相关的做 法,首先在每组变量内部找出具有最大相关性的一对线性组合,然后再在每组变量内找 出第二对线性组合,使其本身具有最大的相关性,并分别与第一对线性组合不相关。如 此下去,直到两组变量内各变量之间的相关性被提取完毕为止。有了这些最大相关的线 性组合,则讨论两组变量之间的相关,就转化为研究这些线性组合的最大相关,从而减 少了研究变量的个数。

     可以看到X和Y是样本数目相同,但是所含特征数不同。

  • 相关阅读:
    杭电1827
    hdu 3118
    poj 2060
    hdu 2236
    poj 2226
    poj 1719
    poj 1466
    poj 3160
    骑士飞行棋笔记
    基础测试学习笔记
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/14183103.html
Copyright © 2011-2022 走看看