zoukankan      html  css  js  c++  java
  • 是否需要self.loss.cuda()

    转自:https://discuss.pytorch.org/t/why-do-we-need-to-do-loss-cuda-when-we-we-have-already-done-model-cuda/91023/5

    https://discuss.pytorch.org/t/move-the-loss-function-to-gpu/20060

    1.问题

    有的模型将损失函数也调用了cuda():

     if torch.cuda.is_available():
            net.cuda()
            softMax.cuda()
            CE_loss.cuda()
            Dice_loss.cuda()

    但如果损失函数没有参数,且输入的tensor本身就在cuda上面,就没有必要调用.cuda()。

    需要调用的情况:

    output = torch.randn(10, 10, requires_grad=True, device='cuda')
    target = torch.randint(0, 10, (10,), device='cuda')
    
    weight = torch.empty(10).uniform_(0, 1)
    criterion = nn.CrossEntropyLoss(weight=weight)
    
    loss = criterion(output, target) # error
    > RuntimeError: Expected object of device type cuda but got device type cpu for argument 
    #3 'weight' in call to _thnn_nll_loss_forward criterion.cuda() loss = criterion(output, target) # works

    因为损失函数中用到了weight权重计算,所以需要把criterion 也放到cuda上。

  • 相关阅读:
    Day4-装饰器
    Day3-递归函数、高阶函数、匿名函数
    Day3-函数及作用域
    Day2-字符编码转换
    Day2-文件操作
    Day2-列表、字符串、字典、集合
    Day1-模块初识
    JavaScript 笔试题
    从JavaScript 数组去重谈性能优化
    prototype
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/15542320.html
Copyright © 2011-2022 走看看