zoukankan      html  css  js  c++  java
  • PAT 1086 Tree Traversals Again[中序转后序][难]

    1086 Tree Traversals Again(25 分)

    An inorder binary tree traversal can be implemented in a non-recursive way with a stack. For example, suppose that when a 6-node binary tree (with the keys numbered from 1 to 6) is traversed, the stack operations are: push(1); push(2); push(3); pop(); pop(); push(4); pop(); pop(); push(5); push(6); pop(); pop(). Then a unique binary tree (shown in Figure 1) can be generated from this sequence of operations. Your task is to give the postorder traversal sequence of this tree.


    Figure 1

    Input Specification:

    Each input file contains one test case. For each case, the first line contains a positive integer N (30) which is the total number of nodes in a tree (and hence the nodes are numbered from 1 to N). Then 2N lines follow, each describes a stack operation in the format: "Push X" where X is the index of the node being pushed onto the stack; or "Pop" meaning to pop one node from the stack.

    Output Specification:

    For each test case, print the postorder traversal sequence of the corresponding tree in one line. A solution is guaranteed to exist. All the numbers must be separated by exactly one space, and there must be no extra space at the end of the line.

    Sample Input:

    6
    Push 1
    Push 2
    Push 3
    Pop
    Pop
    Push 4
    Pop
    Pop
    Push 5
    Push 6
    Pop
    Pop
    

    Sample Output:

    3 4 2 6 5 1

     题目大意:二叉树的中根遍历,可以通过栈来实现,那么现在给出一棵二叉树的中根遍历操作,要求输出后根遍历结果。

    //完全可以通过输入来确定这棵二叉树的中根遍历,即已知中根遍历求后根遍历。但是我不会啊。

     代码转自:https://www.liuchuo.net/archives/2168

    #include <cstdio>
    #include <vector>
    #include <stack>
    #include <cstring>
    using namespace std;
    vector<int> pre, in, post,value;
    void postorder(int root, int start, int end) {
        if (start > end) return;
        int i = start;
        while (i < end && in[i] != pre[root]) {//中序遍历序列中存的节点的id,唯一的!
            i++;
            printf("%d %d
    " ,in[i],pre[root]);
        }
        postorder(root + 1, start, i - 1);
        //左子树共有i-start+1个节点。
        postorder(root + 1 + i - start, i + 1, end);
        post.push_back(pre[root]);
    }
    int main() {
        int n;
        scanf("%d", &n);
        char str[5];
        stack<int> s;
        int key=0;
        while (~scanf("%s", str)) {
            if (strlen(str) == 4) {
                int num;
                scanf("%d", &num);
                value.push_back(num);
                pre.push_back(key);//对应num有一个序号,从0开始。
    
                s.push(key++);
            } else {
                in.push_back(s.top());//现在存了中序遍历
                //存的是id对应的序号(为了防止重复呢。)
                s.pop();
            }
        }
    
        postorder(0, 0, n - 1);
        printf("
    ");
        printf("%d", value[post[0]]);
        for (int i = 1; i < n; i++)
            printf(" %d",value[post[i]]);
        return 0;
    }

    //这个代码简直太难了,看了好几遍都理解不了那个中序转后序的,气死了。

    //这个明天还要搜一下别的题解,简直气死我了。

    //更要重点掌握一套,二叉树的各种访问序列转换方法。

    2018-11-17更——————

    我的AC:

    #include <iostream>
    #include <cstdio>
    #include <vector>
    #include<stack>
    
    using namespace std;
    vector<int> in,pre,post;
    void postOrder(int inL,int inR,int preL,int preR){
        if(inL>inR)return ;
       // int i=0;//标识中根遍历中的根节点下标
        int i=0;
        while(in[i]!=pre[preL])i++;
        //遍历左右子树
        postOrder(inL,i-1,preL+1,preR+i-inL);
        postOrder(i+1,inR,preL+i-inL+1,preR);
        post.push_back(in[i]);
    }
    int main()
    {
        //push的顺序就是前序,弹出的顺序就是中序。
        int n,id;
        cin>>n;
        string s;
        stack<int> tree;
        for(int i=0;i<2*n;i++){
            cin>>s;
            if(s[1]=='u'){
                cin>>id;
                tree.push(id);
                pre.push_back(id);//前序遍历放进来。
            }else{
                int temp=tree.top();
                tree.pop();
                in.push_back(temp);
            }
        }
       // cout<<pre.size();
        postOrder(0,n-1,0,n-1);
        for(int i=0;i<n;i++){
            cout<<post[i];
            if(i!=n-1)cout<<" ";
        }
        return 0;
    }

    //在牛客网上通不过,说内存超限,通过率为0,因为递归层数太深?

    遇到的问题:

    1.postOrder函数,作为递归出口应该是in的左右去判断,如果是pre的,则不会输出结果

    2.在postOrder的while循环中,i可以从0开始判断。

    3.柳神的代码考虑了key不唯一的情况,但是我没考虑,而且PAT上应该也没考虑,否则就不会AC了。

    4.关于这个key的问题,是应该考虑一下不唯一的情况的,因为题目里并没有说。

  • 相关阅读:
    leetcode58. 最后一个单词的长度 🌟
    leetcode53. 最大子序和 🌟
    leetcode38. 报数 🌟
    leetcode35. 搜索插入位置 🌟
    leetcode28. 实现strStr() 🌟
    ⚠️ Python 循环列表删除元素的注意事项
    leetcode27. 移除元素 🌟
    leetcode26. 删除排序数组中的重复项 🌟
    javascript 高阶函数 currying & uncurrying
    javascript 高阶函数 实现 AOP 面向切面编程 Aspect Oriented Programming
  • 原文地址:https://www.cnblogs.com/BlueBlueSea/p/9587900.html
Copyright © 2011-2022 走看看