zoukankan      html  css  js  c++  java
  • Rplidar学习(五)—— rplidar使用cartographer_ros进行地图云生成

    一、Cartographer简介

      Cartographer是google开源的通用2D和3D定位与地图同步构建的SLAM工具,并提供ROS接口。官网地址:https://github.com/googlecartographer

    二、安装方法

    1、安装全部依赖项

    sudo apt-get update
    sudo apt-get install -y 
    cmake 
    g++ 
    git 
    google-mock 
    libboost-all-dev 
    libeigen3-dev 
    libgflags-dev 
    libgoogle-glog-dev 
    liblua5.2-dev 
    libprotobuf-dev 
    libsuitesparse-dev 
    libwebp-dev 
    ninja-build 
    protobuf-compiler 
    python-sphinx 
    ros-kinetic-tf2-eigen 
    libatlas-base-dev 
    libsuitesparse-dev 
    liblapack-dev

    2、安装ceres solver,下载安装在主目录下,由于googlesource.com需要FQ,这里使用hitcm(张明明)的github地址

    # Build and install Ceres.
    # git clone https://ceres-solver.googlesource.com/ceres-solver
    # cd ceres-solver
    git clone https://github.com/hitcm/ceres-solver-1.11.0.git
    cd ceres-solver-1.11.0
    mkdir build
    cd build
    cmake .. -G Ninja
    ninja
    ninja test
    sudo ninja install

    3、安装cartographer,下载安装在主目录下,这里同样使用的是hitcm(张明明)的github地址

    # Build and install Cartographer.
    git clone https://github.com/hitcm/cartographer.git
    cd cartographer
    mkdir build
    cd build
    cmake .. -G Ninja
    ninja
    ninja test
    sudo ninja install

    4、安装cartographer_ros,这里使用的是hitcm(张明明)的github地址,由于google官方的教程需要FQ下载一些文件,因此容易失败,经验证hitcm(张明明)对原文件进行了少许修改后可以成功安装,在他的修改中核心代码不变,只修改了编译文件。

    # Install wstool and rosdep.
    sudo apt-get update
    sudo apt-get install -y python-wstool python-rosdep ninja-build
    # Create a new workspace in 'catkin_ws'.
    mkdir catkin_ws
    cd catkin_ws
    wstool init src
    # 下载到catkin_ws下面的src文件夹下面
    cd src
    git clone https://github.com/hitcm/cartographer_ros.git
    # 然后到catkin_ws下面运行catkin_make安装 (会失败,所以根据提示改变命令)
    cd
    cd catkin_ws
    catkin_make
    source ./devel/setup.zsh

    5、改变命令进行编译

    catkin_make_isolated --install --use-ninja

    6、修改cartographer_ros--cartographer_ros--launch--demo_revo_lds.launch

        <launch>  
          
          <param name="/use_sim_time" value="true" />  
          <node name="cartographer_node" pkg="cartographer_ros"  
              type="cartographer_node" args="  
                  -configuration_directory $(find cartographer_ros)/configuration_files  
                  -configuration_basename revo_lds.lua"  
              output="screen">  
            <remap from="scan" to="scan" />  
          </node>  
          <node name="rviz" pkg="rviz" type="rviz" required="true"  
              args="-d $(find cartographer_ros)/configuration_files/demo_2d.rviz" />  
        </launch>

      修改cartographer_ros--cartographer_ros--configuration_files--revo_lds.lua

    options = {
    
      map_builder = MAP_BUILDER,
    
      sensor_bridge = {
    
        horizontal_laser_min_range = 0.3,
    
        horizontal_laser_max_range = 8,
    
        horizontal_laser_missing_echo_ray_length = 1.2,
    
        constant_odometry_translational_variance = 0.,
    
        constant_odometry_rotational_variance = 0.,
    
      },
    
      map_frame = "map",
    
      tracking_frame = "laser",
    
      published_frame = "laser",
    
      odom_frame = "odom",
    
      provide_odom_frame = true,
    
      use_odometry_data = false,
    
      use_constant_odometry_variance = true,
    
      constant_odometry_translational_variance = 1e-2,
    
      constant_odometry_rotational_variance = 1e-1,
    
      use_horizontal_laser = true,
    
      use_horizontal_multi_echo_laser = false,
      
      horizontal_laser_min_range = 0.1,
      
      horizontal_laser_max_range = 30.,
      
      horizontal_laser_missing_echo_ray_length = 5.,
    
      num_lasers_3d = 0,
    
      lookup_transform_timeout_sec = 0.2,
    
      submap_publish_period_sec = 0.3,
    
      pose_publish_period_sec = 5e-3,
    
    }
    
    MAP_BUILDER.use_trajectory_builder_2d = true
    
    TRAJECTORY_BUILDER_2D.use_imu_data = false
    
    TRAJECTORY_BUILDER_2D.use_online_correlative_scan_matching = true
    
    SPARSE_POSE_GRAPH.optimization_problem.huber_scale = 1e2
    
    return options

       修改完以上2个文件重新编译一下,命令行输入

    catkin_make_isolated --install --use-ninja

     

     7、运行

      最后命令行中运行rplidar的Node和launch文件

    roslaunch rplidar_ros rplidar.launch 
    roslaunch cartographer_ros demo_revo_lds.launch

     

     

  • 相关阅读:
    X的平方根(二分)
    JavaScript(1)
    入门训练 Fibonacci数列 (水题)
    set集合容器
    deque双端队列容器
    回归分析
    cf1121d 尺取
    CF1121C 模拟
    poj3662 二分+最短路
    最短路小结
  • 原文地址:https://www.cnblogs.com/BlueMountain-HaggenDazs/p/6691709.html
Copyright © 2011-2022 走看看