zoukankan      html  css  js  c++  java
  • 【考试总结】欢乐模拟赛_Day1

    (T1)

    题目描述

    给出一个 (n × n) 的, 元素为自然数的矩阵.
    这个矩阵有许许多多个子矩阵, 定义它的所有子矩阵形成的集合为 (S) .
    对于一个矩阵 (k) , 定义 (f(k))(k) 中所有元素的 (AND) 值 (按位与).
    对于一个矩阵 (k) , 定义 (g(k))(k) 中所有元素的 (OR) 值 (按位或).
    请求出所有子矩阵的 (f(k)) 之和与所有子矩阵的 (g(k)) 之和, 即 (prod_{k∈S}f(k))(prod_{k∈S}g(k)) .
    由于答案可能很大, 只需要输出答案对 (998244353) 取模的结果.

    (Solution)

    期望得分-(30pts),结果错了三个地方:

    (1.)文件输入输出把题目名字写错了...
    (2.)看成了异或...
    (3.)递推的顺序错误,推前面的用到了后面还没推的

    这种令人降智的错误犯一次就不可以第二次了啊。。。

    (100pts)做法:

    把每个数拆成二进制,第 (k) 位上的数对答案贡献为 (2^k * ans)

    (ans_{add}) 可以看作全 (1) 的矩阵个数,(ans_{or}) 可看作所有矩阵减去全 (0) 矩阵个数

    枚举每一列,用单调栈更新这一列的矩阵个数

    时间复杂度:(O(n^2)),但是有个 (31) 的常数(二进制位数)

    (Code)

    #include<bits/stdc++.h>
    #define ll long long
    #define F(i, x, y) for(int i = x; i <= y; ++ i)
    using namespace std;
    int read();
    const int mod = 998244353;
    const int N = 1e3 + 5;
    int n, top;
    int ma[N][N], mb[N][N];
    ll sta[N], pos[N], s[N], f[N][N][2];
    ll ans, ans1, ans2;
    int main()
    {
    	freopen("mob.in","r",stdin);
    	freopen("mob.out","w",stdout);
    	n = read();
    	F(i, 1, n) F(j, 1, n) mb[i][j] = read();
    	F(k, 0, 31)
    	{
    		F(i, 1, n) F(j, 1, n) ma[i][j] = mb[i][j] & 1, mb[i][j] >>= 1;
    		F(i, 1, n) F(j, 1, n)
    			if(ma[i][j]) f[i][j][1] = f[i][j - 1][1] + 1, f[i][j][0] = 0;
    			else f[i][j][1] = 0, f[i][j][0] = f[i][j - 1][0] + 1;
    		ans = 0;
    		F(j, 1, n)
    		{
    			top = 0;
    			F(i, 1, n)
    			{	
    				while(top && f[i][j][1] <= sta[top]) -- top;
    				sta[++ top] = f[i][j][1], pos[top] = i;
    				s[top] = (s[top - 1] + (i - pos[top - 1]) * f[i][j][1] % mod) % mod;
    				ans = (ans + s[top]) % mod;
    			}
    		}
    		ans1 = (ans1 + ans * (1 << k) % mod) % mod;
    		ans = 0;
    		F(j, 1, n)
    		{
    			top = 0;
    			F(i, 1, n)
    			{	
    				while(top && f[i][j][0] <= sta[top]) -- top;
    				sta[++ top] = f[i][j][0], pos[top] = i;
    				s[top] = (s[top - 1] + (i - pos[top - 1]) * f[i][j][0] % mod) % mod;
    				ans = (ans + i * j % mod + mod - s[top]) % mod;
    			}
    		}
    		ans2 = (ans2 + ans * (1 << k) % mod) % mod;
    		//printf("%lld
    %lld", ans1, ans2);
    	}
    	printf("%lld
    %lld", ans1, ans2);
    	return 0;
    }
    int read()
    {
    	int x = 0, f = 1;
    	char c = getchar();
    	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return x * f;
    }
    

    (T2)

    题目描述

    (n) 个人想要加入圣战, 每个人需要选择一个阵营加入.
    但他们私下有 (m) 对敌对关系, 有敌对关系的两个人不会加入同一个阵营.
    很快, 他们发现这会让他们难以加入到圣战中, 于是有一对敌人和好了, 即去除了一对敌对关系.
    请找出去除哪一对关系后, 能找到一种加入阵营的方案, 使得剩余有敌对关系的人都不在同一个阵营.
    为了避免输出文件过大, 你只需要输出所有符合题意的关系编号的异或和.

    (Solution)

    期望得分-(30pts),错误:

    (1.)要把 (next) 写作 (nxt) 之类,避免关键词
    (2.) (dfs) 写错了

    (90pts)做法:

    根据观察分析可得出,拆去一条边后合法仅为剩下的图中无奇环

    则做一个 (dfs) 找奇环,记录奇环数量 (K),最后枚举边,若边被奇环覆盖数 (=) (K),即合法

    主要是在如何找奇环,我写的 (dfs) 少了一句关键的 (vis[x] = 0),就是在搜完这个点后要将它复原,不然会有奇环搜不到

    至于为什么是 (90pts),emm有两个点一直不对,但是这个算法应该是没问题(题解和这个基本是一样的),还在搜索错误中

    (upd(4/11):) 其实是对的,数据错了

    (Code)

    #include<bits/stdc++.h>
    #define F(i, x, y) for(int i = x; i <= y; ++ i)
    using namespace std;
    int read();
    const int N = 2e6 + 5;
    int n, m, x, y;
    int ans1, ans2, K;
    int head[N], cnt = 1, ver[N << 1], nxt[N << 1];
    int vis[N], dep[N], pre[N], kk[N];
    void add(int x, int y)
    {
    	ver[++ cnt] = y, nxt[cnt] = head[x], head[x] = cnt;
    }
    void dfs(int x, int ffa, int y)
    {
    	if(vis[x] && (dep[ffa] - dep[x]) % 2 == 0)
    	{
    		++ K, ++ kk[y], ++ kk[y ^ 1];
    		while(ffa != x) ++ kk[pre[ffa]], ++ kk[pre[ffa] ^ 1], ffa = ver[pre[ffa] ^ 1];
    		return;
    	}
    	if(vis[x]) return;
    	dep[x] = dep[ffa] + 1, pre[x] = y, vis[x] = 1;
    	for(int i = head[x]; i; i = nxt[i])
    		if(ver[i] != ffa) dfs(ver[i], x, i);
    	vis[x] = 0;
    }
    int main()
    {
    	freopen("crusade.in","r",stdin);
    	freopen("crusade.out","w",stdout);
    	n = read(), m = read();
    	F(i, 1, m) x = read(), y = read(), add(x, y), add(y, x);
    	F(i, 1, n) if(! vis[i]) dfs(i, 0, 0);
    	for(int i = 2; i <= cnt; i += 2) if(kk[i] == K) ++ ans1, ans2 ^= (i / 2);
    	printf("%d
    %d
    ", ans1, ans2);
    	return 0;
    }
    int read()
    {
    	int x = 0, f = 1;
    	char c = getchar();
    	while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    	while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return x * f;
    }
    

    (T3)

    题目描述

    有一个长度为 (n) 的正整数序列 (a) , 你需要进行 (m) 次操作, 每次操作有如下两种类型:
    修改: ((L, R, x)) , 表示将区间 ([L, R]) 内的 (ai) 都乘上一个正整数 (x) .
    询问: ((L, R)) , 询问区间 ([L, R]) 内每个数的乘积的欧拉函数值, 即 φ(∏Ri=Lai)

    (Solution)

    300以内只有62个质数,所以可以用 (long long) 类型的数记录包含的质数,用线段树维护

    提前预处理好质数,逆元,一些欧拉函数相关

    (Code)

    调了两个多小时还是错的$kk$


    总结

    今天考试惨烈地暴零了,原因有以下几点:

    (1.)菜,所以花时间想正解基本上等于浪费时间了

    (2.)连续几次看错题,例如 (t2) 最开始看错题花了一个小时写错误的算法,(t1) 把或看作异或等,还是考试不够专注,没有全身心投入

    (3.)破罐子破摔心理不可有,一旦开考就不要想有的没的,只要多拿分,不管情况是怎样,一定要尽可能拿更高得分

    (4.)完整地搞定一道题(至少保证它能拿到想要的分数)后再去开下一道,今天就是 (t1) 暴力写完了,居然放在那里没调,打算把第三题写完一起调,最后都暴零了

  • 相关阅读:
    [计算机故障处理]小区宽带无法上网(中国联通)
    [计算机故障]笔记本无法启动,开机启动出现“Operating System Not Found”无法进系统
    [英语学习]微软面试前英语集训笔记-day 1
    [办公应用]如何将excel合并单元格分拆后每个单元格上仍保留数据?
    [办公应用]如何设置IE打印时的默认页边距,并设置纸张为横向(会计票据打印)
    [计算机故障]excel无法存盘,总是自动重启恢复
    codeforces732D 二分加贪心。。
    topcoder-srm701-div2-900 博弈计算二进制位1的个数dp状态压缩
    什么是超级立方体,HyperCube
    从维度理解dp问题
  • 原文地址:https://www.cnblogs.com/Bn_ff/p/12675564.html
Copyright © 2011-2022 走看看