zoukankan      html  css  js  c++  java
  • TOJ 5020: Palindromic Paths

    5020: Palindromic Paths 分享至QQ空间

    Time Limit(Common/Java):10000MS/30000MS     Memory Limit:65536KByte
    Total Submit: 8            Accepted:4

    Description

     

    Given an N×N grid of fields (1≤N≤500), each labeled with a letter in the alphabet. For example:

    ABCD

    BXZX
    CDXB
    WCBA

    Each day, Susa walks from the upper-left field to the lower-right field, each step taking her either one field to the right or one field downward. Susa keeps track of the string that she generates during this process, built from the letters she walks across. She gets very disoriented, however, if this string is a palindrome (reading the same forward as backward), since she gets confused about which direction she had walked.

    Please help Susa determine the number of distinct routes she can take that correspond to palindromes. Different ways of obtaining the same palindrome count multiple times. Please print your answer modulo 1,000,000,007.

     

    Input

    The first line of input contains N, and the remaining N lines contain the N rows of the grid of fields. Each row contains N characters that are in the range A...Z.

    Output

     

    Please output the number of distinct palindromic routes Susa can take, modulo 1,000,000,007.

    Sample Input

    4
    ABCD
    BXZX
    CDXB
    WCBA

    Sample Output

     12

    Hint

    Susa can make the following palindromes

    1 x "ABCDCBA"

    1 x "ABCWCBA"

    6 x "ABXZXBA"

    4 x "ABXDXBA"

    Source

    USACO 2015 US Open

    一道不错的枚举+滚动数组,美滋滋,f[i][j][k]表示第一个点在第i行,第2个点在第j行都走了k步的方案数

     

    #include <stdio.h>
    #include <algorithm>
    using namespace std;
    typedef __int64 ll;
    const int mod=1e9+7;
    char s[502][502];
    ll dp[502][502][2];
    int main() {
        int n;
        scanf("%d",&n);
        for(int i=1; i<=n; i++)
            scanf("%s",s[i]+1);
        int now=1,pre=0;
        if(s[1][1]!=s[n][n]) {
            return 0,printf("0
    ");
        }
        dp[1][n][pre]=1;
        for(int k=2; k<=n; k++) {
            for(int i=1; i<=k; i++)
                for(int j=n; j>=i&&j>=n-k+1; j--) {
                    if(s[i][k-i+1]==s[j][n-k+n-j+1])
                        dp[i][j][now]=(dp[i-1][j][pre]+dp[i][j][pre]+dp[i][j+1][pre]+dp[i-1][j+1][pre])%mod;
                    else dp[i][j][now]=0;
                }
            swap(now,pre);
        }
        ll ans=0;
        for(int i=1; i<=n; i++) {
            ans=(ans+dp[i][i][pre])%mod;
        }
        printf("%lld",ans);
        return 0;
    }

     

     

  • 相关阅读:
    POJ 2253 Frogger(最短路 Floyd)
    POJ 1062 昂贵的聘礼 (最短路 Dijkstra)
    POJ 3259 Wormholes(最短路Bellman_Ford)
    POJ 3414 Pots(容量BFS)
    POJ 3087 Shuffle'm Up(模拟题)
    POJ 3216 Prime Path(数字BFS)
    refresh的停车场
    基于邻接表的广度优先搜索遍历
    判断给定图是否存在合法的拓扑排序
    威威猫系列故事——篮球梦
  • 原文地址:https://www.cnblogs.com/BobHuang/p/7277296.html
Copyright © 2011-2022 走看看