zoukankan      html  css  js  c++  java
  • TOJ2712: Atlantis

    小数据求面积并

    There are several ancient Greek texts that contain descriptions of the fabled island Atlantis. Some of these texts even include maps of parts of the island. But unfortunately, these maps describe different regions of Atlantis. Your friend Bill has to know the total area for which maps exist. You (unwisely) volunteered to write a program that calculates this quantity.

    Input

    The input file consists of several test cases. Each test case starts with a line containing a single integer n (1<=n<=100) of available maps. The n following lines describe one map each. Each of these lines contains four numbers x1;y1;x2;y2 (0<=x1<x2<=100000;0<=y1<y2<=100000), not necessarily integers. The values (x1; y1) and (x2;y2) are the coordinates of the top-left resp. bottom-right corner of the mapped area.

    The input file is terminated by a line containing a single 0. Don’t process it.

    Output

    For each test case, your program should output one section. The first line of each section must be “Test case #k”, where k is the number of the test case (starting with 1). The second one must be “Total explored area: a”, where a is the total explored area (i.e. the area of the union of all rectangles in this test case), printed exact to two digits to the right of the decimal point.

    Output a blank line after each test case.

    Sample Input

     

    2
    10 10 20 20
    15 15 25 25.5
    0

    Sample Output

     

    Test case #1
    Total explored area: 180.00

    Source

    Mid-Central Europe 2000

    这个直接用了二分查询,但是复杂度还是蛮高的

     

    #include<bits/stdc++.h>
    using namespace std;
    const int N=205;
    const double eps=1e-8;
    int n,vis[N],t;
    double has[N];
    struct line
    {
        double l,r,y;
        int f;
        line(){}
        line(double l,double r,double y,int f):l(l),r(r),y(y),f(f){}
    }L[N];
    bool cmp(line a,line b)
    {
        return a.y<b.y;
    }
    int get(double x)
    {
        return lower_bound(has,has+t,x)-has;
    }
    int main()
    {
        int ca=0,i,j;
        double x1,y1,x2,y2;
        while(scanf("%d",&n),n)
        {
            t=0;
            memset(vis,0,sizeof vis);
            for(i=0; i<n; i++)
            {
                scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
                L[t]=line(x1,x2,y1,1),has[t++]=x1;
                L[t]=line(x1,x2,y2,-1),has[t++]=x2;
            }
            n*=2;
            sort(L,L+n,cmp);
            sort(has,has+t);
            t=1;
            for(i=1;i<n;i++)
                if(fabs(has[i]-has[i-1])>eps)has[t++]=has[i];
            double res=0;
            for(i=0; i<n; i++)
            {
                int l=get(L[i].l),r=get(L[i].r);
                double len=0;
                for(j=0;j<t-1;j++)
                    if(vis[j]>0)len+=has[j+1]-has[j];
                if(i)res+=len*(L[i].y-L[i-1].y);
                 for(j=l;j<r;j++)vis[j]+=L[i].f;
            }
            printf("Test case #%d
    Total explored area: %.2f
    
    ",++ca,res);
        }
        return 0;
    }

     

     

  • 相关阅读:
    递归斐波那契数列时间复杂度
    动态规划 矩阵链乘法
    kmp算法
    贪心 单源最短路径
    贪心法 背包问题求解
    贪心法 货币支付问题或找零问题
    贪心算法简介
    排列问题的递归算法和非递归算法
    php __set() __get() __isset() __unset()四个方法的应用
    使用栈结构完毕四则运算
  • 原文地址:https://www.cnblogs.com/BobHuang/p/8698496.html
Copyright © 2011-2022 走看看