内容概要:
-
我们怎么知道是混乱的数据
-
修复 nan 值和字符串/浮点类型的混乱问题
-
“-”怎么处理
-
整合代码
# 导入需要的包 import pandas as pd import numpy as np # 可以展示比较多的列,60 列 pd.set_option('display.line_width', 5000) pd.set_option('display.max_columns', 60)
混杂数据最重要的一个问题就是:怎么知道是否是混杂的数据。
下面准备使用 NYC 311 服务请求数据集,因为这个是一个庞杂的数据集。
requests = pd.read_csv('../data/311-service-requests.csv')
我们怎么知道是混乱的数据
我们开始少看几列,因为现在一直 Zip Code(邮编)有些问题,所以我们首先看看这个。
为了搞清楚 whether 列是否有问题,常常使用 .unique() 来查看一列的所有数据。如果是一个数值类型的列,最好使用一个直方图来获取数值的分布情况。
requests['Incident Zip'].unique() array([11432.0, 11378.0, 10032.0, 10023.0, 10027.0, 11372.0, 11419.0, 11417.0, 10011.0, 11225.0, 11218.0, 10003.0, 10029.0, 10466.0, 11219.0, 10025.0, 10310.0, 11236.0, nan, 10033.0, 11216.0, 10016.0, 10305.0, 10312.0, 10026.0, 10309.0, 10036.0, 11433.0, 11235.0, 11213.0, 11379.0, 11101.0, 10014.0, 11231.0, 11234.0, 10457.0, 10459.0, 10465.0, 11207.0, 10002.0, 10034.0, 11233.0, 10453.0, 10456.0, 10469.0, 11374.0, 11221.0, 11421.0, 11215.0, 10007.0, 10019.0, 11205.0, 11418.0, 11369.0, 11249.0, 10005.0, 10009.0, 11211.0, 11412.0, 10458.0, 11229.0, 10065.0, 10030.0, 11222.0, 10024.0, 10013.0, 11420.0, 11365.0, 10012.0, 11214.0, 11212.0, 10022.0, 11232.0, 11040.0, 11226.0, 10281.0, 11102.0, 11208.0, 10001.0, 10472.0, 11414.0, 11223.0, 10040.0, 11220.0, 11373.0, 11203.0, 11691.0, 11356.0, 10017.0, 10452.0, 10280.0, 11217.0, 10031.0, 11201.0, 11358.0, 10128.0, 11423.0, 10039.0, 10010.0, 11209.0, 10021.0, 10037.0, 11413.0, 11375.0, 11238.0, 10473.0, 11103.0, 11354.0, 11361.0, 11106.0, 11385.0, 10463.0, 10467.0, 11204.0, 11237.0, 11377.0, 11364.0, 11434.0, 11435.0, 11210.0, 11228.0, 11368.0, 11694.0, 10464.0, 11415.0, 10314.0, 10301.0, 10018.0, 10038.0, 11105.0, 11230.0, 10468.0, 11104.0, 10471.0, 11416.0, 10075.0, 11422.0, 11355.0, 10028.0, 10462.0, 10306.0, 10461.0, 11224.0, 11429.0, 10035.0, 11366.0, 11362.0, 11206.0, 10460.0, 10304.0, 11360.0, 11411.0, 10455.0, 10475.0, 10069.0, 10303.0, 10308.0, 10302.0, 11357.0, 10470.0, 11367.0, 11370.0, 10454.0, 10451.0, 11436.0, 11426.0, 10153.0, 11004.0, 11428.0, 11427.0, 11001.0, 11363.0, 10004.0, 10474.0, 11430.0, 10000.0, 10307.0, 11239.0, 10119.0, 10006.0, 10048.0, 11697.0, 11692.0, 11693.0, 10573.0, 83.0, 11559.0, 10020.0, 77056.0, 11776.0, 70711.0, 10282.0, 11109.0, 10044.0, '10452', '11233', '10468', '10310', '11105', '10462', '10029', '10301', '10457', '10467', '10469', '11225', '10035', '10031', '11226', '10454', '11221', '10025', '11229', '11235', '11422', '10472', '11208', '11102', '10032', '11216', '10473', '10463', '11213', '10040', '10302', '11231', '10470', '11204', '11104', '11212', '10466', '11416', '11214', '10009', '11692', '11385', '11423', '11201', '10024', '11435', '10312', '10030', '11106', '10033', '10303', '11215', '11222', '11354', '10016', '10034', '11420', '10304', '10019', '11237', '11249', '11230', '11372', '11207', '11378', '11419', '11361', '10011', '11357', '10012', '11358', '10003', '10002', '11374', '10007', '11234', '10065', '11369', '11434', '11205', '11206', '11415', '11236', '11218', '11413', '10458', '11101', '10306', '11355', '10023', '11368', '10314', '11421', '10010', '10018', '11223', '10455', '11377', '11433', '11375', '10037', '11209', '10459', '10128', '10014', '10282', '11373', '10451', '11238', '11211', '10038', '11694', '11203', '11691', '11232', '10305', '10021', '11228', '10036', '10001', '10017', '11217', '11219', '10308', '10465', '11379', '11414', '10460', '11417', '11220', '11366', '10027', '11370', '10309', '11412', '11356', '10456', '11432', '10022', '10013', '11367', '11040', '10026', '10475', '11210', '11364', '11426', '10471', '10119', '11224', '11418', '11429', '11365', '10461', '11239', '10039', '00083', '11411', '10075', '11004', '11360', '10453', '10028', '11430', '10307', '11103', '10004', '10069', '10005', '10474', '11428', '11436', '10020', '11001', '11362', '11693', '10464', '11427', '10044', '11363', '10006', '10000', '02061', '77092-2016', '10280', '11109', '14225', '55164-0737', '19711', '07306', '000000', 'NO CLUE', '90010', '10281', '11747', '23541', '11776', '11697', '11788', '07604', 10112.0, 11788.0, 11563.0, 11580.0, 7087.0, 11042.0, 7093.0, 11501.0, 92123.0, 0.0, 11575.0, 7109.0, 11797.0, '10803', '11716', '11722', '11549-3650', '10162', '92123', '23502', '11518', '07020', '08807', '11577', '07114', '11003', '07201', '11563', '61702', '10103', '29616-0759', '35209-3114', '11520', '11735', '10129', '11005', '41042', '11590', 6901.0, 7208.0, 11530.0, 13221.0, 10954.0, 11735.0, 10103.0, 7114.0, 11111.0, 10107.0], dtype=object)
当我们在 “Incident Zip” 列使用 .unique(),很轻易的发现这些数据很混乱。
下面是问题列表:
- 类型问题,有些值是字符串的数值,有些是浮点型的数值
- 空值问题,有些值是 nan
- 格式问题,有些 Zip Code 中间有“-”,有些是有两位数值
- 正规化问题,有些值是 Pandas 不能识别的值,如 ‘N/A’或 ‘NO CLUE’
如何处理:
- 正规化 ‘N/A’或 ‘NO CLUE’为常规的 nan 值
- 仔细分析 ‘83’,再决定如何处理
- 全部转换为 string 类型
修复 nan 值和字符串/浮点类型的混乱问题
我们在使用 pd.read_csv() 时候,通过传递可选参数 “na_values”来清洗一部分数据。我们还会通过参数指定 “Incident Zip”的数据类型,将类型确定为字符串,而不是浮点型
na_values = ['NO CLUE', 'N/A', '0'] requests = pd.read_csv('../data/311-service-requests.csv', na_values=na_values, dtype={'Incident Zip': str}) requests['Incident Zip'].unique() array(['11432', '11378', '10032', '10023', '10027', '11372', '11419', '11417', '10011', '11225', '11218', '10003', '10029', '10466', '11219', '10025', '10310', '11236', nan, '10033', '11216', '10016', '10305', '10312', '10026', '10309', '10036', '11433', '11235', '11213', '11379', '11101', '10014', '11231', '11234', '10457', '10459', '10465', '11207', '10002', '10034', '11233', '10453', '10456', '10469', '11374', '11221', '11421', '11215', '10007', '10019', '11205', '11418', '11369', '11249', '10005', '10009', '11211', '11412', '10458', '11229', '10065', '10030', '11222', '10024', '10013', '11420', '11365', '10012', '11214', '11212', '10022', '11232', '11040', '11226', '10281', '11102', '11208', '10001', '10472', '11414', '11223', '10040', '11220', '11373', '11203', '11691', '11356', '10017', '10452', '10280', '11217', '10031', '11201', '11358', '10128', '11423', '10039', '10010', '11209', '10021', '10037', '11413', '11375', '11238', '10473', '11103', '11354', '11361', '11106', '11385', '10463', '10467', '11204', '11237', '11377', '11364', '11434', '11435', '11210', '11228', '11368', '11694', '10464', '11415', '10314', '10301', '10018', '10038', '11105', '11230', '10468', '11104', '10471', '11416', '10075', '11422', '11355', '10028', '10462', '10306', '10461', '11224', '11429', '10035', '11366', '11362', '11206', '10460', '10304', '11360', '11411', '10455', '10475', '10069', '10303', '10308', '10302', '11357', '10470', '11367', '11370', '10454', '10451', '11436', '11426', '10153', '11004', '11428', '11427', '11001', '11363', '10004', '10474', '11430', '10000', '10307', '11239', '10119', '10006', '10048', '11697', '11692', '11693', '10573', '00083', '11559', '10020', '77056', '11776', '70711', '10282', '11109', '10044', '02061', '77092-2016', '14225', '55164-0737', '19711', '07306', '000000', '90010', '11747', '23541', '11788', '07604', '10112', '11563', '11580', '07087', '11042', '07093', '11501', '92123', '00000', '11575', '07109', '11797', '10803', '11716', '11722', '11549-3650', '10162', '23502', '11518', '07020', '08807', '11577', '07114', '11003', '07201', '61702', '10103', '29616-0759', '35209-3114', '11520', '11735', '10129', '11005', '41042', '11590', '06901', '07208', '11530', '13221', '10954', '11111', '10107'], dtype=object)
“-”怎么处理
rows_with_dashes = requests['Incident Zip'].str.contains('-').fillna(False) len(requests[rows_with_dashes]) 5 requests[rows_with_dashes] 29136 77092-2016 30939 55164-0737 70539 11549-3650 85821 29616-0759 89304 35209-3114 Name: Incident Zip, dtype: object
我们可以简单粗暴的认为这些数据是缺失值,将其删除
requests['Incident Zip'][rows_with_dashes] = np.nan
但是,仔细分析下来9位数字长度的邮编也是正常的,接下来,我们查找下所有大于 5 位数字长度的邮编,确保这些是正常的,然后截断他们
long_zip_codes = requests['Incident Zip'].str.len() > 5 requests['Incident Zip'][long_zip_codes].unique() array(['77092-2016', '55164-0737', '000000', '11549-3650', '29616-0759', '35209-3114'], dtype=object)
这些都是可以被我们截断的
requests['Incident Zip'] = requests['Incident Zip'].str.slice(0, 5)
完成
最开始,认为 00083 是一个错误的邮编,最后发现这是一个真实存在的邮编!数据中还有 “00000” 的邮编,我们还是需要考虑下这个邮编的,下面我们找出所有这样邮编的数据。
requests[requests['Incident Zip'] == '00000']
这个结果看起来并不好,还是把他们赋值成 nan
zero_zips = requests['Incident Zip'] == '00000' requests['Incident Zip'][zero_zips] = np.nan
见证一下阶段性的成果
# 正常这里是不需要再次进行类型转换,我这里不转换,排序会报错 unique_zips = requests['Incident Zip'].unique() unique_zips.sort() unique_zips array(['00083', '02061', '06901', '07020', '07087', '07093', '07109', '07114', '07201', '07208', '07306', '07604', '08807', '10000', '10001', '10002', '10003', '10004', '10005', '10006', '10007', '10009', '10010', '10011', '10012', '10013', '10014', '10016', '10017', '10018', '10019', '10020', '10021', '10022', '10023', '10024', '10025', '10026', '10027', '10028', '10029', '10030', '10031', '10032', '10033', '10034', '10035', '10036', '10037', '10038', '10039', '10040', '10044', '10048', '10065', '10069', '10075', '10103', '10107', '10112', '10119', '10128', '10129', '10153', '10162', '10280', '10281', '10282', '10301', '10302', '10303', '10304', '10305', '10306', '10307', '10308', '10309', '10310', '10312', '10314', '10451', '10452', '10453', '10454', '10455', '10456', '10457', '10458', '10459', '10460', '10461', '10462', '10463', '10464', '10465', '10466', '10467', '10468', '10469', '10470', '10471', '10472', '10473', '10474', '10475', '10573', '10803', '10954', '11001', '11003', '11004', '11005', '11040', '11042', '11101', '11102', '11103', '11104', '11105', '11106', '11109', '11111', '11201', '11203', '11204', '11205', '11206', '11207', '11208', '11209', '11210', '11211', '11212', '11213', '11214', '11215', '11216', '11217', '11218', '11219', '11220', '11221', '11222', '11223', '11224', '11225', '11226', '11228', '11229', '11230', '11231', '11232', '11233', '11234', '11235', '11236', '11237', '11238', '11239', '11249', '11354', '11355', '11356', '11357', '11358', '11360', '11361', '11362', '11363', '11364', '11365', '11366', '11367', '11368', '11369', '11370', '11372', '11373', '11374', '11375', '11377', '11378', '11379', '11385', '11411', '11412', '11413', '11414', '11415', '11416', '11417', '11418', '11419', '11420', '11421', '11422', '11423', '11426', '11427', '11428', '11429', '11430', '11432', '11433', '11434', '11435', '11436', '11501', '11518', '11520', '11530', '11549', '11559', '11563', '11575', '11577', '11580', '11590', '11691', '11692', '11693', '11694', '11697', '11716', '11722', '11735', '11747', '11776', '11788', '11797', '13221', '14225', '19711', '23502', '23541', '29616', '35209', '41042', '55164', '61702', '70711', '77056', '77092', '90010', '92123', 'nan'], dtype=object)
还是不错的,数据已经更加清晰了。
最后整合一下所有代码
下面是我们上面做的清洗邮编的代码,如下:
na_values = ['NO CLUE', 'N/A', '0'] requests = pd.read_csv('../Data/311-service-requests.csv', na_values=na_values, dtype={'Incident Zip': str} def fix_zip_codes(zips): # 将长度大于 5 位数字的邮编,截断为 5 位 zips = zips.str.slice(0, 5) # 将 00000 赋值为 nan zero_zips = zips == '00000' zips[zero_zips] = np.nan return zips requests['Incident Zip'] = fix_zip_codes(requests['Incident Zip']) requests['Incident Zip'].unique()
311-service-requests.csv
链接:https://pan.baidu.com/s/1mh9HxTe 密码:ksq4