zoukankan      html  css  js  c++  java
  • [Noip2013]华容道

    题目描述

    小 B 最近迷上了华容道,可是他总是要花很长的时间才能完成一次。于是,他想到用编程来完成华容道:给定一种局面,华容道是否根本就无法完成,如果能完成,最少需要多少时间。

    小 B 玩的华容道与经典的华容道游戏略有不同,游戏规则是这样的:

    1.在一个 n∗mn*mnm 棋盘上有 n∗mn*mnm 个格子,其中有且只有一个格子是空白的,其余 n∗m−1n*m-1nm1 个格子上每个格子上有一个棋子,每个棋子的大小都是 1∗11*111 的;

    2.有些棋子是固定的,有些棋子则是可以移动的;

    3.任何与空白的格子相邻(有公共的边)的格子上的棋子都可以移动到空白格子上。游戏的目的是把某个指定位置可以活动的棋子移动到目标位置。

    给定一个棋盘,游戏可以玩 qqq 次,当然,每次棋盘上固定的格子是不会变的,但是棋盘上空白的格子的初始位置、指定的可移动的棋子的初始位置和目标位置却可能不同。第 iii 次玩的时候,空白的格子在第 EXiEX_iEXi​​ 行第 EYiEY_iEYi​​ 列,指定的可移动棋子的初始位置为第 SXiSX_iSXi​​ 行第 SYiSY_iSYi​​ 列,目标位置为第 TXiTX_iTXi​​ 行第 TYiTY_iTYi​​ 列。

    假设小 B 每秒钟能进行一次移动棋子的操作,而其他操作的时间都可以忽略不计。请你告诉小 B 每一次游戏所需要的最少时间,或者告诉他不可能完成游戏。

    输入格式

    第一行有 333 个整数,每两个整数之间用一个空格隔开,依次表示 nnn、mmm 和 qqq;

    接下来的 nnn 行描述一个 n∗mn*mnm 的棋盘,每行有 mmm 个整数,每两个整数之间用一个空格隔开,每个整数描述棋盘上一个格子的状态,000 表示该格子上的棋子是固定的,111 表示该格子上的棋子可以移动或者该格子是空白的。

    接下来的 qqq 行,每行包含 666 个整数依次是 EXiEX_iEXi​​、EYiEY_iEYi​​、SXiSX_iSXi​​、SYiSY_iSYi​​、TXiTX_iTXi​​、TYiTY_iTYi​​,每两个整数之间用一个空格隔开,表示每次游戏空白格子的位置,指定棋子的初始位置和目标位置。

    输出格式

    输出有 qqq 行,每行包含 111 个整数,表示每次游戏所需要的最少时间,如果某次游戏无法完成目标则输出1。

    样例

    样例输入

    3 4 2
    0 1 1 1
    0 1 1 0
    0 1 0 0
    3 2 1 2 2 2
    1 2 2 2 3 2
    

    样例输出

    2
    -1
    

    样例说明

    棋盘上划叉的格子是固定的,红色格子是目标位置,圆圈表示棋子,其中绿色圆圈表示目标棋子。

    第一次游戏,空白格子的初始位置是 (3,2)(3,2)(3,2) (图中空白所示),游戏的目标是将初始位置在 (1,2)(1,2)(1,2) 上的棋子(图中绿色圆圈所代表的棋子)移动到目标位置 (2,2)(2,2)(2,2) (图中红色的格子)上。

    移动过程如下:

    若图片失效请下载附加文件

    第二次游戏,空白格子的初始位置是 (1,2)(1,2)(1,2) (图中空白所示),游戏的目标是将初始位置在 (2,2)(2,2)(2,2) 上的棋子(图中绿色圆圈所示)移动到目标位置 (3,2)(3,2)(3,2) 上。

    若图片失效请下载附加文件

    要将指定块移入目标位置,必须先将空白块移入目标位置,空白块要移动到目标位置,必然是从位置 (2,2)(2,2)(2,2) 上与当前图中目标位置上的棋子交换位置,之后能与空白块交换位置的只有当前图中目标位置上的那个棋子,因此目标棋子永远无法走到它的目标位置,游戏无法完成。

    数据范围与提示

    对于30%30\%30% 的数据,1≤n,m≤101 leq n, m leq 101n,m10,q=1q = 1q=1;

    对于60%60\%60% 的数据,1≤n,m≤301 leq n, m leq 301n,m30,q≤10q leq 10q10;

    对于100%100\%100% 的数据,1≤n,m≤301 leq n, m leq 301n,m30,q≤500q leq 500q500。


    把状态看做点,转移的代价看成边,于是就变成了最短路问题。

    我们把少量的有用的状态拿出来进行连边。

    $large id[i][j][k]$为空格在$large (i, j)$的k方向的状态的编号。

    然后用bfs处理出[i][j][k] 到 [i][j][p] 的路径长度连边。

    还有一种转移是空格和(i, j)换位置, [i][j][k] 与 [i'][j'][k^1] 连边权1的边。

    每次开始的时候把空格点跑bfs,向起点的四周连边。

    然后spfa跑最短路。


    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    using namespace std;
    inline int read() {
        int res=0;char ch=getchar();bool flag=0;
        while(!isdigit(ch)) {if(ch=='-')flag=1;ch=getchar();}
        while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48), ch=getchar();
        return flag ? -res : res;
    }
    #define reg register
    int dx[] = {1, -1, 0, 0}, dy[] = {0, 0, 1, -1};
    int n, m, q;
    bool mp[35][35];
    int id[35][35][5], tot;
    
    int Ex, Ey, Sx, Sy, Tx, Ty;
    
    struct edge {
        int nxt, to, val;
    }ed[35*35*35*2];
    int head[35*35*4], cnt;
    inline void add(int x, int y, int z)
    {
        if (z == 0x3f3f3f3f) return ;
        ed[++cnt] = (edge) {head[x], y, z};
        head[x] = cnt;
    }
    
    struct date {
        int x, y, stp;
    };
    int stp[35][35];
    int dis[35*35*8];
    bool vis[35][35];
    bool ex[35*35*8];
    
    inline bool ok(int x, int y)
    {
        if (!mp[x][y] and x > 0 and x <= n and y > 0 and y <= m) return 1;
        return 0;
    }
    
    inline int bfs(int sx, int sy, int tx, int ty, int fx, int fy)
    {
        if (sx == tx and sy == ty) return 0;
        memset(vis, 0, sizeof vis);
        queue <date> q;
        q.push((date){sx, sy, 0});
        vis[sx][sy] = 1;
        while(!q.empty())
        {
            int x = q.front().x, y = q.front().y, tp = q.front().stp;q.pop();
            for (reg int i = 0 ; i < 4 ; i ++)
            {
                int ux = x + dx[i], uy = y + dy[i];
                if (ok(ux, uy) and !vis[ux][uy])
                {
                    vis[ux][uy] = 1;
                    if (ux == fx and uy == fy) continue;
                    if (ux == tx and uy == ty) return tp + 1;
                    q.push((date){ux, uy, tp + 1});
                }
            }
        }
        return 0x3f3f3f3f;
    }
    
    int main()
    {
        memset(mp, 1, sizeof mp);
        n = read(), m = read(), q = read();
        for (reg int i = 1 ; i <= n ; i ++)
            for (reg int j = 1 ; j <= m ; j ++)
                if (read()) mp[i][j] = 0;//如果不固定就是0
        for (reg int i = 1 ; i <= n ; i ++)
            for (reg int j = 1 ; j <= m ; j ++)
                for (reg int k = 0 ; k < 4 ; k ++)
                    id[i][j][k] = ++tot;
        for (reg int i = 1 ; i <= n ; i ++)
        {
            for (reg int j = 1 ; j <= m ; j ++)
            {
                if (mp[i][j]) continue;
                for (reg int k = 0 ; k < 4 ; k ++)
                {
                    int tx = i + dx[k], ty = j + dy[k];
                    if (ok(tx, ty)) 
                        add(id[i][j][k], id[tx][ty][k^1], 1);
                }
            }
        }
        for (reg int i = 1 ; i <= n ; i ++)
        {
            for (reg int j = 1 ; j <= m ; j ++)    
            {
                if (mp[i][j]) continue;
                for (reg int k = 0 ; k < 4 ; k ++)
                {
                    int x1 = i + dx[k], y1 = j + dy[k];
                    if (!ok(x1, y1)) continue;
                    for (reg int p = 0 ; p < 4 ; p ++)
                    {
                        int x2 = i + dx[p], y2 = j + dy[p];
                        if (k != p and ok(x2, y2))
                        {
                            int tmp = bfs(x1, y1, x2, y2, i, j);
                            if (tmp != 0x3f3f3f3f)  add(id[i][j][k], id[i][j][p], tmp);
                        }
                    }
                }
            }
        }
        while(q--)
        {
            Ex = read(), Ey = read(), Sx = read(), Sy = read(), Tx = read(), Ty = read();
            if (Sx == Tx and Sy == Ty) {puts("0");continue;}
            queue <int> q;
            memset(dis, 0x3f, sizeof dis);
            for (reg int i = 0 ; i < 4 ; i ++)
            {
                int x = Sx + dx[i], y = Sy + dy[i];
                if (ok(x, y))
                {
                    dis[id[Sx][Sy][i]] = bfs(Ex, Ey, x, y, Sx, Sy);
                    q.push(id[Sx][Sy][i]);
                }
            }
            while(!q.empty())
            {
                int x = q.front();q.pop();
                ex[x] = 0;
                for (reg int i = head[x] ; i ; i = ed[i].nxt)
                {
                    int to = ed[i].to;
                    if (dis[to] > dis[x] + ed[i].val)
                    {
                        dis[to] = dis[x] + ed[i].val;
                        if (!ex[to]) ex[to] = 1, q.push(to);
                    }
                }
            }
            int ans = 0x3f3f3f3f;
            for (reg int i = 0 ; i < 4 ; i ++)
                ans = min(ans, dis[id[Tx][Ty][i]]);
            printf("%d
    ", ans == 0x3f3f3f3f ? -1 : ans);
        }
        return 0;
    }
  • 相关阅读:
    缺陷笔记
    Eclipse中常用快捷键
    PL/SQL中复制粘贴表结构信息
    request之setAtrribute
    list+map
    套接字初始化失败问题
    上机编程题(2016校招)
    动态规划
    VS中碰到的问题
    IE8添加元素报错《没有权限》错误
  • 原文地址:https://www.cnblogs.com/BriMon/p/9536797.html
Copyright © 2011-2022 走看看