zoukankan      html  css  js  c++  java
  • [CF494B] Obsessive String

    Hamed has recently found a string t and suddenly became quite fond of it. He spent several days trying to find all occurrences of t in other strings he had. Finally he became tired and started thinking about the following problem. Given a string s how many ways are there to extract k ≥ 1 non-overlapping substrings from it such that each of them contains string t as a substring? More formally, you need to calculate the number of ways to choose two sequences a1, a2, ..., ak and b1, b2, ..., bk satisfying the following requirements:

    • k ≥ 1
    •   t is a substring of string saisai + 1... sbi (string s is considered as 1-indexed).

    As the number of ways can be rather large print it modulo 109 + 7.

    Input

    Input consists of two lines containing strings s and t (1 ≤ |s|, |t| ≤ 105). Each string consists of lowercase Latin letters.

    Output

    Print the answer in a single line.


    此题两种DP方式。

    先预处理出来b串在a串中匹配的位置,然后开始DP。

    设$f[i]$表示考虑到$i$位置,且$i$的最后一个字符串与b串是匹配的方案数。

    显然如果$i$不是b的匹配位置,$f[i]=f[i-1]$。

    如果$i$是b的匹配位置,首先考虑只有一个串, 那么答案就是$i-lb+1$,因为$1$到$i-lb+1$的所有位置都可以作为一个开始。

    那如果是多个串呢?如果我们设最后一个串从位置$k$开始,那么前面的所有的方案数就是$large sum_{i=1}^{k}f[i]$,对于每个位置k求和,就是$large sum_{k=1}^{i-lb} sum_{j=1}^{k} f[j]$。

    这样只用记录一下f的前缀和和f的前缀和的前缀和就可以快速转移啦。

    代码在后面贴。

    还有一种方法,状态的定义略微的有些不同,设$f[i]$表示,到第i个位置之前总共有多少方案,其实就是前缀和了一下。

    每次记录上一个匹配点,从上一个匹配点开始转移。

    代码贴后面了。

    找匹配点可以用kmp,或者hash都行。


    方法1:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    using namespace std;
    #define reg register 
    #define mod 1000000007
    int la, lb;
    char a[100005], b[100005];
    unsigned long long hsha[100005], hshb[100005], fac[100005];
    bool End[100005];
    int f[100005], sum[100005], Ssum[100005];
    int ans;
    
    int main()
    {
        scanf("%s%s", a + 1, b + 1);
        la = strlen(a + 1), lb = strlen(b + 1);
        for (reg int i = 1 ; i <= la ; i ++) hsha[i] = hsha[i - 1] * 27 + (a[i] - 'a' + 1);
        for (reg int i = 1 ; i <= lb ; i ++) hshb[i] = hshb[i - 1] * 27 + (b[i] - 'a' + 1); 
        fac[0] = 1;
        for (reg int i = 1 ; i <= max(la, lb) ; i ++) fac[i] = fac[i - 1] * 27;
        for (reg int i = lb ; i <= la ; i ++)
            if (hsha[i] - hsha[i - lb] * fac[lb] == hshb[lb]) End[i] = 1;
        for (reg int i = 1 ; i <= la ; i ++)
        {
            if (!End[i]) f[i] = f[i-1];
            else f[i] = Ssum[i - lb] + i - lb + 1;
            sum[i] = sum[i-1] + f[i];if(sum[i] >= mod) sum[i] -= mod;
            Ssum[i] = Ssum[i-1] + sum[i];if(Ssum[i] >= mod) Ssum[i] -= mod;
        }
        for (reg int i = 1 ; i <= la ; i ++)
            ans = (ans + f[i]) % mod;
        cout << ans << endl;
        return 0;
    }

    方法2:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    using namespace std;
    #define reg register 
    #define mod 1000000007
    int la, lb;
    char a[100005], b[100005];
    int nxt[100005];
    bool End[100005];
    int f[100005], sum[100005];
    
    int main()
    {
        scanf("%s%s", a + 1, b + 1);
        la = strlen(a + 1), lb = strlen(b + 1);
        int k = 0;
        for (reg int i = 2 ; i <= lb ; i ++)
        {
            while(k and b[i] != b[k + 1]) k = nxt[k];
            if (b[k + 1] == b[i]) k ++;
            nxt[i] = k;
        }
        k = 0;
        for (reg int i = 1 ; i <= la ; i ++)
        {
            while(k and a[i] != b[k + 1]) k = nxt[k];
            if (b[k + 1] == a[i]) k ++;
            if (k == lb) End[i] = 1;
        }
        int lst = -1;
        for (reg int i = 1 ; i <= la ; i ++)
        {
            f[i] += f[i-1];
            if (End[i]) lst = i - lb + 1;
            if (lst != -1) f[i] += sum[lst - 1] + lst;
            if (f[i] >= mod) f[i] -= mod;
            sum[i] = sum[i-1] + f[i];
            if (sum[i] >= mod) sum[i] -= mod;
        }
        cout << f[la] << endl;
        return 0;
    }
  • 相关阅读:
    自定义滚动条原理
    多个轮播图或者选项卡显示在一个页面是,使用代码重用
    浮动与清除
    cni 添加网络 流程分析
    《MapReduce: Simplified Data Processing on Large Cluster 》翻译
    OpenStack overview 笔记
    docker containerd shim分析
    docker containerd 中的create 容器操作
    MIT jos 6.828 Fall 2014 训练记录(lab 6)
    docker containerd中的容器操作
  • 原文地址:https://www.cnblogs.com/BriMon/p/9698796.html
Copyright © 2011-2022 走看看