zoukankan      html  css  js  c++  java
  • HDU 1695 GCD(求两区间的互质数对+容斥原理)

    Description

    Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output the total number of different number pairs. 
    Please notice that, (x=5, y=7) and (x=7, y=5) are considered to be the same. 

    Yoiu can assume that a = c = 1 in all test cases.
     

    Input

    The input consists of several test cases. The first line of the input is the number of the cases. There are no more than 3,000 cases. 
    Each case contains five integers: a, b, c, d, k, 0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000, as described above. 
     

    Output

    For each test case, print the number of choices. Use the format in the example. 
     

    Sample Input

    2 1 3 1 5 1 1 11014 1 14409 9
     

    Sample Output

    Case 1: 9 Case 2: 736427

    Hint

    For the first sample input, all the 9 pairs of numbers are (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 5), (3, 4), (3, 5). 

    b,d除于k,转化为求互质对
    用容斥原理求出所有不互质的数对数,再用整数减去!

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <vector>
    #include <cstring>
    
    using namespace std;
    
    #define LL long long
    #define N 111111
    
    int a,b,c,d,k;
    LL ans;
    vector<int> prime[N];
    bool vis[N];
    
    void init(){
        memset(vis,false,sizeof vis);
        for(int i=0;i<=N;i++) prime[i].clear();
        for(int i=2;i<=N;i+=2) prime[i].push_back(2);//这样快很多
        for(int i=3;i<=N;i+=2) if(!vis[i]){
            for(int j=i;j<=N;j+=i){
                prime[j].push_back(i);vis[j]=true;
            }
        }
    }
    
    void fun(int x,LL y,int z){
        LL v = 1,cnt=0;
        for(int i=0;i<prime[x].size();i++){
            if(1<<i&y){
                v*=prime[x][i];
                cnt++;
            }
        }
        if(cnt&1) ans-=z/v;
        else ans+=z/v;
    }
    
    
    int main()
    {
        init();int _,o;scanf("%d",&_);o=_;
        while(_--){
            printf("Case %d: ",o-_);ans=0;
            scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
            if(!k) {puts("0");continue;}
            b/=k,d/=k;int z;if(d<b) z=d,d=b,b=z;
            for(int i=1;i<=d;i++){
                int k = min(i,b);ans+=k;//保证不重复
                for(LL j=1;j<(1<<prime[i].size());j++) fun(i,j,k);
            }
            printf("%lld
    ",ans);
        }
        return 0;
    }
    

      



  • 相关阅读:
    Asp.net性能优化总结(一)
    Visual C#常用函数和方法集汇总
    ASP.net下大文件上传的解决方案及WebbUpload组件源码
    正则表达式学习
    在Asp.net中为图像加入版权信息
    Cognos 维度函数
    Cognos8.3函数使用手册(二)
    cognos更新步聚
    Cognos8.3函数使用手册(一)
    Cognos 8 报表备份和恢复
  • 原文地址:https://www.cnblogs.com/BugClearlove/p/4705465.html
Copyright © 2011-2022 走看看