zoukankan      html  css  js  c++  java
  • [省选联考 2021 A/B 卷] 滚榜

    一、题目

    点此看题

    二、解法

    考试时把题目看错了,没有注意到 (a_i) 不降的条件。

    考虑要求的东西是可能的排名情况,也就是求合法排列个数,状压可以将 (O(n!)) 的排列枚举优化成 (O(2^n)),那么这道题肯定会用上它。

    如果我们不考虑 (a_i) 不降的限制,发现这个题根本做不出来。因为你不知道某集合的最大值是谁,就算你记录了是谁也不知道是多少。那么考虑把 (a_i) 不降当成条件而非限制

    某东西不降可以自然的联想到差分技巧,也就是当前我们把某个人 (i) 的过题数增加 (x),那么不在状压集合里的人的过题数也增加 (x),下次考虑到某个人 (j) 的时候 (i,j) 的相对过题差值就没有变化,可以当成初始过题数来考虑,所以我们只需要记录最大值是哪个人即可。

    (dp[s][i][k]) 为考虑集合 (s) 中的人,最后公布排名的人是 (i),已经分配的过题数是 (k) 的顺序情况数,转移考虑刷表法,枚举下一个公布排名的人 (j),设 (w(j,i)) 表示初始情况下 (j) 超过 (i) 的最小过题数乘以剩下的总人数,转移:

    [dp[s|2^j][j][k+w(j,i)]leftarrow dp[s][i][k] ]

    话说 ( t CCF) 给的时间复杂度越来越离谱了,(O(2^nn^2m)) 看上去就跑不动啊 (...)

    三、总结

    做题时我们会忽略某限制来做,再考虑加上某限制。但如果忽略某限制做不起就一定要注意了,可以把限制当成条件!

    差分技巧的使用十分关键,(dp) 的时候差分放状态里可以叫消耗提前计算。

    #include <cstdio>
    #include <iostream>
    using namespace std;
    #define pii pair<int,int>
    #define make make_pair
    #define ll long long
    int read()
    {
    	int x=0,f=1;char c;
    	while((c=getchar())<'0' || c>'9') {if(c=='-') f=-1;}
    	while(c>='0' && c<='9') {x=(x<<3)+(x<<1)+(c^48);c=getchar();}
    	return x*f;
    }
    int n,m;pii mx,a[15];ll ans,dp[1<<13][15][505];
    int w(pii a,pii b)
    {
    	int t=b.first-a.first;
    	return max(0,t+(b.second<a.second));
    }
    signed main()
    {
    	n=read();m=read();
    	for(int i=0;i<n;i++)
    	{
    		a[i]=make(read(),i);
    		if(mx.first<a[i].first) mx=a[i];
    		if(mx.first==a[i].first && mx>a[i]) mx=a[i];
    	}
    	for(int i=0;i<n;i++)
    	{
    		int t=n*w(a[i],mx);
    		if(t<=m) dp[1<<i][i][t]=1;
    	}
    	for(int s=0;s<(1<<n);s++)
    	{
    		int t=__builtin_popcount(s);
    		for(int i=0;i<n;i++)
    		{
    			if((s&(1<<i))==0) continue;
    			for(int l=0;l<=m;l++)
    			{
    				if(dp[s][i][l]==0) continue;
    				for(int j=0;j<n;j++)
    				{
    					if(s&(1<<j)) continue; 
    					int r=(n-t)*w(a[j],a[i]);
    					if(l+r<=m)
    						dp[s|(1<<j)][j][l+r]+=dp[s][i][l];
    				}
    			}
    		}
    	}
    	for(int i=0;i<n;i++)
    		for(int j=0;j<=m;j++)
    			ans+=dp[(1<<n)-1][i][j];
    	printf("%lld
    ",ans);
    }
    
  • 相关阅读:
    【API知识】类型转换工具ConvertUtils引发的思考
    【API知识】MongoTemplate非映射方式操作Document
    python+scrapy分析博客园首页4000篇优质博客(图解)
    px和dp(内含大量的像素单位详解)
    【惊!】代码中出现“//保重,兄弟!”
    用故事解析setTimeout和setInterval(内含js单线程和任务队列)
    css_transition_animation(内含贝赛尔曲线详解)
    你绝对不知道的head标签
    css3的@media
    安利一个免费下载VIP文档神器
  • 原文地址:https://www.cnblogs.com/C202044zxy/p/15032150.html
Copyright © 2011-2022 走看看