很明显是一个最短路,但是如何建图才是关键。
对于每一个不可遍历到的点,可以向外扩散,找到危险城市。
若是对于每一个这样的城市进行搜索,时间复杂度就为(O(n^2)),显然过不了。不妨把它们放在一个BFS里面进行搜索,先遍历可以向外延伸最长的点,因为这个点是可以存活很长的。若之后再遍历到这个点的时候,就不用在遍历了,因为这时候的存活时间已经没有之前遍历的时候高了。BFS+打标记遍历完一张图只需要(O(n))的时间复杂度,很大程度上优化了建图方面。
最后根据所给的边跑一遍最短路即可,代码如下:
#include <queue>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
void Quick_Read(LL &N) {
N = 0;
char c = getchar();
LL op = 1;
while(c < '0' || c > '9') {
if(c == '-')
op = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
N = (N << 1) + (N << 3) + c - 48;
c = getchar();
}
N *= op;
}
const LL MAXN = 1e6 + 5;
struct Node {
LL to, dist;
Node() {}
Node(LL T, LL D) {
to = T;
dist = D;
}
friend bool operator > (Node x, Node y) {
return x.dist > y.dist;
}
};
struct Flee {
LL step, id;
Flee() {}
Flee(LL I, LL S) {
step = S;
id = I;
}
friend bool operator > (Flee x, Flee y) {
return x.step < y.step;
}
};
vector<LL> v[MAXN];
vector<Node> wg[MAXN];
queue<Flee> que;
priority_queue<Node, vector<Node>, greater<Node> > qu;
bool f[MAXN], vis[MAXN], vi[MAXN], V[MAXN];
LL c[MAXN], w[MAXN];
LL A[MAXN], B[MAXN], d[MAXN];
LL n, m, k, s, p, q;
void Dijkstra() {
memset(d, 0x3f, sizeof(d));
qu.push(Node(1, 0));
d[1] = 0;
while(!qu.empty()) {
LL now = qu.top().to; qu.pop();
if(V[now])
continue;
V[now] = true;
LL SIZ = wg[now].size();
for(LL i = 0; i < SIZ; i++) {
LL next = wg[now][i].to;
if(d[now] + wg[now][i].dist < d[next]) {
d[next] = d[now] + wg[now][i].dist;
qu.push(Node(next, d[next]));
}
}
}
printf("%lld", d[n]);
}
void bfs() {
for(LL i = 1; i <= k; i++) {
que.push(Flee(c[i], s));
vi[c[i]] = 1;
}
while(!que.empty()) {
Flee now = que.front(); que.pop();
if(vis[now.id])
continue;
vis[now.id] = 1;
vi[now.id] = 1;
if(now.step == 0)
continue;
LL SIZ = v[now.id].size();
for(LL i = 0; i < SIZ; i++) {
LL nex = v[now.id][i];
que.push(Flee(nex, now.step - 1));
}
}
}
void Read() {
Quick_Read(n);
Quick_Read(m);
Quick_Read(k);
Quick_Read(s);
Quick_Read(p);
Quick_Read(q);
for(LL i = 1; i <= k; i++) {
Quick_Read(c[i]);
f[c[i]] = true;
}
for(LL i = 1; i <= m; i++) {
Quick_Read(A[i]);
Quick_Read(B[i]);
v[A[i]].push_back(B[i]);
v[B[i]].push_back(A[i]);
}
}
void Build() {
for(LL i = 1; i <= n; i++)
w[i] = p;
for(LL i = 1; i <= n; i++)
if(vi[i])
w[i] = q;
for(LL i = 1; i <= k; i++)
w[c[i]] = INF;
for(LL i = 1; i <= m; i++) {
if(B[i] == n) {
wg[A[i]].push_back(Node(B[i], 0));
wg[B[i]].push_back(Node(A[i], w[A[i]]));
}
else if(A[i] == n) {
wg[A[i]].push_back(Node(B[i], w[B[i]]));
wg[B[i]].push_back(Node(A[i], 0));
}
else {
wg[A[i]].push_back(Node(B[i], w[B[i]]));
wg[B[i]].push_back(Node(A[i], w[A[i]]));
}
}
}
int main() {
Read();
bfs();
Build();
Dijkstra();
return 0;
}