zoukankan      html  css  js  c++  java
  • Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C

    C - Points, Lines and Ready-made Titles

    把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ^ n - 1

    否则是2 ^ n。 各个联通块乘起来就是答案。

    #include<bits/stdc++.h>
    #define LL long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ull unsigned long long
    using namespace std;
    
    const int N = 4e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 1e9 + 7;
    const double eps = 1e-8;
    
    int n, x[N], y[N], hs[N], tot;
    int bin[N], fa[N], ecnt[N], pcnt[N];
    
    int getRoot(int x) {
        return x == fa[x] ? x : fa[x] = getRoot(fa[x]);
    }
    
    int main() {
        for(int i = bin[0] = 1; i < N; i++) bin[i] = bin[i - 1] * 2 % mod;
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            scanf("%d%d", &x[i], &y[i]);
            hs[++tot] = x[i];
            hs[++tot] = y[i];
        }
        sort(hs + 1, hs + 1 + tot);
        tot = unique(hs + 1, hs + 1 + tot) - hs - 1;
        for(int i = 1; i <= n; i++) {
            x[i] = lower_bound(hs + 1, hs + 1 + tot, x[i]) - hs;
            y[i] = lower_bound(hs + 1, hs + 1 + tot, y[i]) - hs;
        }
        for(int i = 1; i <= 2 * tot; i++) fa[i] = i, ecnt[i] = 0, pcnt[i] = 1;
        for(int i = 1; i <= n; i++) {
            int X = getRoot(x[i]);
            int Y = getRoot(y[i] + tot);
            if(X == Y) {
                ecnt[X]++;
            } else {
                ecnt[X] += ecnt[Y] + 1;
                pcnt[X] += pcnt[Y];
                fa[Y] = X;
            }
        }
        LL ans = 1;
        for(int i = 1; i <= 2 * tot; i++) {
            if(i != fa[i]) continue;
            if(ecnt[i] < pcnt[i]) ans = (ans * (bin[pcnt[i]] - 1 + mod) % mod) % mod;
            else ans = (ans * bin[pcnt[i]]) % mod;
        }
        printf("%lld
    ", ans);
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    php 验证码
    扫描登录
    正则表达式
    liunx 搭建svn
    jq
    spl_autoload_register()函数
    php函数操作文件
    配置nginx支持TP框架
    Object-c 访问控制
    Obiective
  • 原文地址:https://www.cnblogs.com/CJLHY/p/10349517.html
Copyright © 2011-2022 走看看