列公式, 整除分块, 想不到, 好菜啊。
#include<bits/stdc++.h> #define LL long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ull unsigned long long using namespace std; const int N = 100 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); LL n, k, a[N], b[10000007], tar, tot; int main() { scanf("%lld%lld", &n, &k); for(int i = 1; i <= n; i++) { scanf("%lld", &a[i]); tar += a[i]; a[i]--; } tar += k; for(int i = 1; i <= n; i++) { for(int j = 1, k; j < a[i]; j = k + 1) { k = a[i] / (a[i] / j); b[tot++] = j; } b[tot++] = a[i] + 1; } sort(b, b + tot); tot = unique(b, b + tot) - b; for(int i = tot - 1; i >= 0; i--) { LL d = b[i], val = 0; for(int i = 1; i <= n; i++) val += d * (a[i] / d); if(n * d + val <= tar) { val = 0; for(int i = 1; i <= n; i++) val += a[i] / d; printf("%lld ", tar / (val + n)); return 0; } } return 0; } /* */