枚举删掉的边, 我们考虑如何将两个团连起来最优, 显然这是两个独立的问题, 两个团内分别选一个最优点连起来就好了。
用每条边的贡献取计算答案, 然后用树形dp去计算连在那个点最优, 考虑改变连接点改变所带来影响就不难写出dp了。
嗯嗯恩。。 好像又写麻烦了, 直接找到两团里面, 到所有点距离和最小的点连起来就好了。
#include<bits/stdc++.h> #define LL long long #define LD long double #define ull unsigned long long #define fi first #define se second #define mk make_pair #define PLL pair<LL, LL> #define PLI pair<LL, int> #define PII pair<int, int> #define SZ(x) ((int)x.size()) #define ALL(x) (x).begin(), (x).end() #define fio ios::sync_with_stdio(false); cin.tie(0); using namespace std; const int N = 5000 + 7; const int inf = 0x3f3f3f3f; const LL INF = 0x3f3f3f3f3f3f3f3f; const int mod = 1e9 + 7; const double eps = 1e-8; const double PI = acos(-1); template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;} template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;} template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;} template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;} int n; int in[N], ot[N], who[N], idx; int fa[N], fsz[N], sz[N], wfa[N]; LL dp[N][2]; bool is[N]; vector<PII> G[N]; LL ret, ans; void dfs(int u) { in[u] = ++idx; who[idx] = u; sz[u] = 1; for(auto &e : G[u]) { if(e.se == fa[u]) continue; fa[e.se] = u; wfa[e.se] = e.fi; dfs(e.se); sz[u] += sz[e.se]; } fsz[u] = n - sz[u]; ret += 1LL * sz[u] * fsz[u] * wfa[u]; ot[u] = idx; } void dfs2(int u, LL tmp, LL &ret, int csz) { chkmin(ret, tmp); for(auto &e : G[u]) { if(e.se == fa[u]) continue; LL ntmp = tmp; ntmp -= 1LL * e.fi * sz[e.se] * fsz[e.se]; ntmp += 1LL * e.fi * (sz[e.se] + csz) * (fsz[e.se] - csz); dfs2(e.se, ntmp, ret, csz); } } void dfs3(int u, int ban, int csz) { dp[u][0] = dp[u][1] = is[u] = 0; if(in[u] <= in[ban] && ot[ban] <= ot[u]) is[u] = true; LL mx = 0; for(auto &e : G[u]) { if(e.se == fa[u] || e.se == ban) continue; dfs3(e.se, ban, csz); chkmin(dp[u][0], dp[e.se][0]); if(is[u]) { if(is[e.se]) { dp[u][1] = dp[e.se][1]; } else { chkmin(mx, dp[e.se][1]); } } else { chkmin(dp[u][1], dp[e.se][1]); } } if(is[u]) { chkmin(dp[u][0], dp[u][1] + mx); dp[u][1] -= 1LL * wfa[u] * sz[u] * fsz[u]; dp[u][1] += 1LL * wfa[u] * (sz[u] - csz) * (fsz[u] + csz); } else { dp[u][1] -= 1LL * wfa[u] * sz[u] * fsz[u]; dp[u][1] += 1LL * wfa[u] * (sz[u] + csz) * (fsz[u] - csz); chkmin(dp[u][1], 0); } } LL solve(int x) { LL ret = 0; dfs2(x, 0, ret, fsz[x]); dfs3(1, x, sz[x]); ret += dp[1][0]; return ret; } int main() { scanf("%d", &n); for(int i = 1; i < n; i++) { int a, b, w; scanf("%d%d%d", &a, &b, &w); G[a].push_back(mk(w, b)); G[b].push_back(mk(w, a)); } dfs(1); ans = ret; for(int i = 2; i <= n; i++) { chkmin(ans, ret + solve(i)); } printf("%lld ", ans); return 0; } /* */