zoukankan      html  css  js  c++  java
  • bzoj 4196 树链剖分

    现在才回树链剖分好像很丢脸的样子哦。。 但是这个确实感觉是个很基础的东西呀。

    #include<cstdio>
    #include<cmath>
    #include<cstring>
    #include<vector>
    #include<algorithm>
    //#include<bits/stdc++.h>
    #define LL long long
    #define LD long double
    #define ull unsigned long long
    #define fi first
    #define se second
    #define mk make_pair
    #define PLL pair<LL, LL>
    #define PLI pair<LL, int>
    #define PII pair<int, int>
    #define SZ(x) ((int)x.size())
    #define ALL(x) (x).begin(), (x).end()
    #define fio ios::sync_with_stdio(false); cin.tie(0);
    
    using namespace std;
    
    const int N = 1e5 + 7;
    const int inf = 0x3f3f3f3f;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    const int mod = 998244353;
    const double eps = 1e-8;
    const double PI = acos(-1);
    
    template<class T, class S> inline void add(T &a, S b) {a += b; if(a >= mod) a -= mod;}
    template<class T, class S> inline void sub(T &a, S b) {a -= b; if(a < 0) a += mod;}
    template<class T, class S> inline bool chkmax(T &a, S b) {return a < b ? a = b, true : false;}
    template<class T, class S> inline bool chkmin(T &a, S b) {return a > b ? a = b, true : false;}
    
    //mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
    
    int n, q;
    char op[20];
    
    int head[N], etot;
    struct Edge {
        int to, nex;
    } e[N];
    
    void addEdge(int u, int v) {
        e[etot].to = v;
        e[etot].nex = head[u];
        head[u] = etot++;
    }
    
    struct SegmentTree {
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
        int a[N << 2], lazy[N << 2];
        void build(int l, int r, int rt) {
            lazy[rt] = -1;
            a[rt] = 0;
            if(l == r) return;
            int mid = l + r >> 1;
            build(lson); build(rson);
        }
        void push(int rt, int l, int r) {
            if(~lazy[rt]) {
                int mid = l + r >> 1;
                a[rt << 1] = (mid - l + 1) * lazy[rt];
                a[rt << 1 | 1] = (r - mid) * lazy[rt];
                lazy[rt << 1] = lazy[rt];
                lazy[rt << 1 | 1] = lazy[rt];
                lazy[rt] = -1;
            }
        }
        void update(int L, int R, int val, int l, int r, int rt) {
            if(R < l || r < L || R < L) return;
            if(L <= l && r <= R) {
                a[rt] = val * (r - l + 1);
                lazy[rt] = val;
                return;
            }
            push(rt, l, r);
            int mid = l + r >> 1;
            update(L, R, val, lson);
            update(L, R, val, rson);
            a[rt] = a[rt << 1] + a[rt << 1 | 1];
        }
        int query(int L, int R, int l, int r, int rt) {
            if(R < l || r < L || R < L) return 0;
            if(L <= l && r <= R) return a[rt];
            push(rt, l, r);
            int mid = l + r >> 1;
            return query(L, R, lson) + query(L, R, rson);
        }
    } Tree;
    
    int depth[N], top[N], son[N], sz[N], pa[N];
    int in[N], ot[N], rk[N], idx;
    
    void dfs(int u, int fa) {
        pa[u] = fa;
        sz[u] = 1;
        depth[u] = depth[fa] + 1;
        for(int i = head[u]; ~i; i = e[i].nex) {
            int v = e[i].to;
            if(v == fa) continue;
            dfs(v, u);
            sz[u] += sz[v];
            if(sz[son[u]] < sz[v]) {
                son[u] = v;
            }
        }
    }
    
    void dfs2(int u, int fa, int from) {
        in[u] = ++idx;
        rk[idx] = u;
        top[u] = from;
        if(son[u]) dfs2(son[u], u, from);
        for(int i = head[u]; ~i; i = e[i].nex) {
            int v = e[i].to;
            if(v == fa || v == son[u]) continue;
            dfs2(v, u, v);
        }
        ot[u] = idx;
    }
    
    
    int query1(int u) {
        int ans = 0;
        int fu = top[u];
        while(fu) {
            ans += Tree.query(in[fu], in[u], 1, n, 1);
            u = pa[fu]; fu = top[u];
        }
        return ans;
    }
    
    void update1(int u) {
        int fu = top[u];
        while(fu) {
            Tree.update(in[fu], in[u], 1, 1, n, 1);
            u = pa[fu]; fu = top[u];
        }
    }
    
    int query2(int u) {
        return Tree.query(in[u], ot[u], 1, n, 1);
    }
    
    void update2(int u) {
        Tree.update(in[u], ot[u], 0, 1, n, 1);
    }
    
    int main() {
        scanf("%d", &n);
        for(int i = 1; i <= n; i++) {
            head[i] = -1;
        }
        for(int i = 2; i <= n; i++) {
            int par; scanf("%d", &par);
            addEdge(++par, i);
        }
    
        dfs(1, 0);
        dfs2(1, 0, 1);
    
        Tree.build(1, n, 1);
        scanf("%d", &q);
        while(q--) {
            int u;
            scanf("%s%d", op, &u);
            u++;
            if(*op == 'i') {
                printf("%d
    ", depth[u] - query1(u));
                update1(u);
            }
            else {
                printf("%d
    ", query2(u));
                update2(u);
            }
        }
        return 0;
    }
    
    /*
    */
  • 相关阅读:
    绳关节(b2RopeJoint)
    公式推导 圆面积公式 圆周长公式
    ALTER TABLE causes auto_increment resulting key 'PRIMARY'
    MySQL通过Binlog恢复删除的表
    Barracuda VS antelope
    mysqldump 参数说明
    MySQL复制
    MySQL Server-id的作用
    MySQL 简洁连接数据库方式
    Kill 所有MySQL进程
  • 原文地址:https://www.cnblogs.com/CJLHY/p/11174452.html
Copyright © 2011-2022 走看看