维护由若干点(x, y)构成上凸包,并支持求给定一个斜率k的求通过某个点截距的最大值, 需保证 x 递增,
询问 k 递减是用query,否则用query2, 单次log(n), 判断需要用到叉积, 注意是否会爆掉LL。
namespace CH { struct Point { LL x, y; Point(LL x = 0, LL y = 0) : x(x), y(y) {} Point operator - (const Point &rhs) const { return Point(x - rhs.x, y - rhs.y); } }; inline LL Det(Point A, Point B) { return A.x * B.y - B.x * A.y; } struct ConvexHull { Point P[N]; int be, ed; void init() { be = 1, ed = 0; } void add(LL x, LL y) { Point cur(x, y); while(be < ed && Det(cur - P[ed], P[ed] - P[ed - 1]) <= 0) ed--; P[++ed] = Point(x, y); } LL query(LL k) { Point cur(1, k); while(be < ed && Det(cur, P[be + 1] - P[be]) >= 0) be++; return P[be].y - k * P[be].x; } LL query2(LL k) { Point cur(1, k); int low = be + 1, high = ed, mid, pos = be; while(low <= high) { mid = low + high >> 1; if(Det(cur, P[mid] - P[mid - 1]) >= 0) pos = mid, low = mid + 1; else high = mid - 1; } return P[pos].y - k * P[pos].x; } }; }
维护由若干直线(y = k * x + m) 构成的下凸包,并支持给定一个 x 坐标, 求所有直线的 y 的最大值,
没有用到叉积所以答案不怎么会爆LL。
namespace LC { /** * Description: Container where you can add lines of the form kx+m, and query maximum values at points x. * LineContainer Time: O(log N) * LinearLineContainer: the k of Line must be no decrease. */ struct Line { mutable LL k, m, p; bool operator < (const Line& o) const { return k < o.k; } bool operator < (LL x) const { return p < x; } }; struct LineContainer : multiset<Line, less<>> { // (for doubles, use inf = 1/.0, div(a,b) = a/b) const LL inf = LLONG_MAX; LL div(LL a, LL b) { // floored division return a / b - ((a ^ b) < 0 && a % b); } bool isect(iterator x, iterator y) { if (y == end()) { x->p = inf; return false; } if (x->k == y->k) x->p = x->m > y->m ? inf : -inf; else x->p = div(y->m - x->m, x->k - y->k); return x->p >= y->p; } void add(LL k, LL m) { auto z = insert({k, m, 0}), y = z++, x = y; while (isect(y, z)) z = erase(z); if (x != begin() && isect(--x, y)) isect(x, y = erase(y)); while ((y = x) != begin() && (--x)->p >= y->p) isect(x, erase(y)); } LL query(LL x) { assert(!empty()); auto l = *lower_bound(x); return l.k * x + l.m; } }; struct LinearLineContainer { // (for doubles, use inf = 1/.0, div(a,b) = a/b) static const LL inf = LLONG_MAX; Line L[N]; int be, ed; void init() { be = 1; ed = 0; } LL div(LL a, LL b) { // floored division return a / b - ((a ^ b) < 0 && a % b); } bool isect(Line &x, Line &y) { if(x.k == y.k) x.p = x.m > y.m ? inf : -inf; else x.p = div(y.m - x.m, x.k - y.k); return x.p >= y.p; } void add(LL k, LL m) { Line cur = Line{k, m, inf}; if(be <= ed && isect(L[ed], cur)) { L[ed].p = inf; return; } while(be < ed && L[ed - 1].p >= L[ed].p) { isect(L[--ed], cur); } L[++ed] = cur; } LL query(LL x) { assert(be <= ed); while(L[be].p < x) ++be; return L[be].k * x + L[be].m; } }; }