zoukankan      html  css  js  c++  java
  • POJ 3301 Texas Trip

    神奇的3分法,求单峰函数极值的利器!!!
    公式可以画图推导如下:

    x1=cos(a)*x+sin(a)*y;

    y1=cos(a)*y-sin(a)*x;

                                                         Texas Trip
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 3429   Accepted: 1018

    Description

    After a day trip with his friend Dick, Harry noticed a strange pattern of tiny holes in the door of his SUV. The local American Tire store sells fiberglass patching material only in square sheets. What is the smallest patch that Harry needs to fix his door?

    Assume that the holes are points on the integer lattice in the plane. Your job is to find the area of the smallest square that will cover all the holes.

    Input

    The first line of input contains a single integer T expressed in decimal with no leading zeroes, denoting the number of test cases to follow. The subsequent lines of input describe the test cases.

    Each test case begins with a single line, containing a single integer n expressed in decimal with no leading zeroes, the number of points to follow; each of the following n lines contains two integers x and y, both expressed in decimal with no leading zeroes, giving the coordinates of one of your points.

    You are guaranteed that T ≤ 30 and that no data set contains more than 30 points. All points in each data set will be no more than 500 units away from (0,0).

    Output

    Print, on a single line with two decimal places of precision, the area of the smallest square containing all of your points.

    Sample Input

    24-1 -11 -11 1-1 1410 110 -1-10 1-10 -1

    Sample Output

    4.00242.00

    Source

    WaterlooLocalContest, 2007.7.14
     
    用C++提交可以AC,但用G++交WA,可能是精度处理不同~~~
     
      1 #include <cstdio>
      2 #include <cmath>
      3 
      4 using namespace std;
      5 
      6 #define INF (1<<25)
      7 #define eps (1e-12)
      8 #define PI acos(-1.0);
      9 
     10 double x[33];
     11 double y[33];
     12 
     13 int n;
     14 
     15 double mindis(double a)
     16 {
     17     double yMin=INF*1.0,xMin=INF*1.0,xMax=-INF*1.,yMax=-INF*1.0;
     18     double xx[33];
     19     double yy[33];
     20 
     21     for(int i=0;i<n;i++)
     22     {
     23         xx[i]=x[i];
     24         yy[i]=y[i];
     25     }
     26 
     27     for(int i=0;i<n;i++)
     28     {
     29         double xk=xx[i],yk=yy[i];
     30         xx[i]=cos(a)*xk+sin(a)*yk;
     31         yy[i]=cos(a)*yk-sin(a)*xk;
     32     }
     33 
     34     for(int i=0;i<n;i++)
     35     {
     36         if(xx[i]<xMin)
     37         {
     38             xMin=xx[i];
     39         }
     40         if(yy[i]<yMin)
     41         {
     42             yMin=yy[i];
     43         }
     44         if(xx[i]>xMax)
     45         {
     46             xMax=xx[i];
     47         }
     48         if(yy[i]>yMax)
     49         {
     50             yMax=yy[i];
     51         }
     52     }
     53 
     54   double  ansx=xMax-xMin;
     55   double  ansy=yMax-yMin;
     56 
     57     if(ansx-ansy>eps)
     58     {
     59         return ansx;
     60     }
     61     else
     62         return ansy;
     63 
     64 }
     65 
     66 
     67 int main()
     68 {
     69     int m;
     70     scanf("%d",&m);
     71     while(m--)
     72     {
     73         scanf("%d",&n);
     74         for(int i=0;i<n;i++)
     75         {
     76             scanf("%lf%lf",&x[i],&y[i]);
     77         }
     78 
     79         double st=0,ed=PI;
     80 
     81         while(ed-st>=eps)
     82         {
     83             double m1=(st*2+ed)/3.;
     84             double m2=(st+2*ed)/3.;
     85 
     86             double dism1=mindis(m1);
     87             double dism2=mindis(m2);
     88 
     89             if(dism1-dism2<eps)
     90             {
     91                 ed=m2;
     92             }
     93             else
     94             {
     95                 st=m1;
     96             }
     97 
     98         }
     99 
    100         printf("%.2lf\n",mindis(st)*mindis(st));
    101     }
    102 
    103     return 0;
    104 }
     
     
  • 相关阅读:
    VSTO程序基本知识
    NPOI根据Excel模板生成原生的Excel文件实例
    编程实现n阶奇数幻方
    深入介绍Word开发
    漫谈算法(五)问题复杂度分析(Problem Complexity and Adversarial Lower Bound)
    我的VSTO之路:序
    MFC如何让编辑框自动换行,垂直滚动条自动下移到底端
    WORD
    MFC中的列表控件CListCtrl
    实验 1:Mininet 源码安装和可视化拓扑工具
  • 原文地址:https://www.cnblogs.com/CKboss/p/3050143.html
Copyright © 2011-2022 走看看