zoukankan      html  css  js  c++  java
  • POJ 3301 Texas Trip

    神奇的3分法,求单峰函数极值的利器!!!
    公式可以画图推导如下:

    x1=cos(a)*x+sin(a)*y;

    y1=cos(a)*y-sin(a)*x;

                                                         Texas Trip
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 3429   Accepted: 1018

    Description

    After a day trip with his friend Dick, Harry noticed a strange pattern of tiny holes in the door of his SUV. The local American Tire store sells fiberglass patching material only in square sheets. What is the smallest patch that Harry needs to fix his door?

    Assume that the holes are points on the integer lattice in the plane. Your job is to find the area of the smallest square that will cover all the holes.

    Input

    The first line of input contains a single integer T expressed in decimal with no leading zeroes, denoting the number of test cases to follow. The subsequent lines of input describe the test cases.

    Each test case begins with a single line, containing a single integer n expressed in decimal with no leading zeroes, the number of points to follow; each of the following n lines contains two integers x and y, both expressed in decimal with no leading zeroes, giving the coordinates of one of your points.

    You are guaranteed that T ≤ 30 and that no data set contains more than 30 points. All points in each data set will be no more than 500 units away from (0,0).

    Output

    Print, on a single line with two decimal places of precision, the area of the smallest square containing all of your points.

    Sample Input

    24-1 -11 -11 1-1 1410 110 -1-10 1-10 -1

    Sample Output

    4.00242.00

    Source

    WaterlooLocalContest, 2007.7.14
     
    用C++提交可以AC,但用G++交WA,可能是精度处理不同~~~
     
      1 #include <cstdio>
      2 #include <cmath>
      3 
      4 using namespace std;
      5 
      6 #define INF (1<<25)
      7 #define eps (1e-12)
      8 #define PI acos(-1.0);
      9 
     10 double x[33];
     11 double y[33];
     12 
     13 int n;
     14 
     15 double mindis(double a)
     16 {
     17     double yMin=INF*1.0,xMin=INF*1.0,xMax=-INF*1.,yMax=-INF*1.0;
     18     double xx[33];
     19     double yy[33];
     20 
     21     for(int i=0;i<n;i++)
     22     {
     23         xx[i]=x[i];
     24         yy[i]=y[i];
     25     }
     26 
     27     for(int i=0;i<n;i++)
     28     {
     29         double xk=xx[i],yk=yy[i];
     30         xx[i]=cos(a)*xk+sin(a)*yk;
     31         yy[i]=cos(a)*yk-sin(a)*xk;
     32     }
     33 
     34     for(int i=0;i<n;i++)
     35     {
     36         if(xx[i]<xMin)
     37         {
     38             xMin=xx[i];
     39         }
     40         if(yy[i]<yMin)
     41         {
     42             yMin=yy[i];
     43         }
     44         if(xx[i]>xMax)
     45         {
     46             xMax=xx[i];
     47         }
     48         if(yy[i]>yMax)
     49         {
     50             yMax=yy[i];
     51         }
     52     }
     53 
     54   double  ansx=xMax-xMin;
     55   double  ansy=yMax-yMin;
     56 
     57     if(ansx-ansy>eps)
     58     {
     59         return ansx;
     60     }
     61     else
     62         return ansy;
     63 
     64 }
     65 
     66 
     67 int main()
     68 {
     69     int m;
     70     scanf("%d",&m);
     71     while(m--)
     72     {
     73         scanf("%d",&n);
     74         for(int i=0;i<n;i++)
     75         {
     76             scanf("%lf%lf",&x[i],&y[i]);
     77         }
     78 
     79         double st=0,ed=PI;
     80 
     81         while(ed-st>=eps)
     82         {
     83             double m1=(st*2+ed)/3.;
     84             double m2=(st+2*ed)/3.;
     85 
     86             double dism1=mindis(m1);
     87             double dism2=mindis(m2);
     88 
     89             if(dism1-dism2<eps)
     90             {
     91                 ed=m2;
     92             }
     93             else
     94             {
     95                 st=m1;
     96             }
     97 
     98         }
     99 
    100         printf("%.2lf\n",mindis(st)*mindis(st));
    101     }
    102 
    103     return 0;
    104 }
     
     
  • 相关阅读:
    Effective C# Item6:明辨值类型和引用类型的使用场合
    Effective C# Item15:利用using和try/finally语句来清理资源
    Effective C# Item12:变量初始化器优于赋值语句
    Effective C# Item19:定义并实现接口优于继承类型
    Effective C# Item14:利用构造器链
    Effective C# Item18:实现标准Dispose模式
    Effective C# Item17:尽量减少装箱和拆箱
    Effective C# Item7:将值类型尽可能实现为具有常量性和原子性的类型
    Effective C# Item10:理解GetHashCode()方法的缺陷
    Effective C# Item20:明辨接口实现和虚方法重写
  • 原文地址:https://www.cnblogs.com/CKboss/p/3050143.html
Copyright © 2011-2022 走看看