zoukankan      html  css  js  c++  java
  • ZOJ 2562 More Divisors

    传说中的传送门:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1562

    More Divisors

    Time Limit: 2 Seconds      Memory Limit: 65536 KB

    Everybody knows that we use decimal notation, i.e. the base of our notation is 10. Historians say that it is so because men have ten fingers. Maybe they are right. However, this is often not very convenient, ten has only four divisors -- 1, 2, 5 and 10. Thus, fractions like 1/3, 1/4 or 1/6 have inconvenient decimal representation. In this sense the notation with base 12, 24, or even 60 would be much more convenient.

    The main reason for it is that the number of divisors of these numbers is much greater -- 6, 8 and 12 respectively. A good quiestion is: what is the number not exceeding n that has the greatest possible number of divisors? This is the question you have to answer.

    Input:

    The input consists of several test cases, each test case contains a integer n (1 <= n <= 1016).

    Output:

    For each test case, output positive integer number that does not exceed n and has the greatest possible number of divisors in a line. If there are several such numbers, output the smallest one.

    Sample Input:
     
    10
     20
     100
    Sample Output:
     
    6
    12
    60

    Author: Andrew Stankevich
    Source: Andrew Stankevich's Contest #4

    反素数:反素数第一点:g(x)表示 x含有因子的数目,设 0<i<=x  则g(i)<=x;

    反素数第二个特性:2^t1*3^t2^5^t3*7^t4..... 这里有 t1>=t2>=t3>=t4...

     

     
    #include <iostream>
    #include <cstdio>
    #include <cstring>

    using namespace std;

    typedef long long int LL;

    const long long int pri[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47};

    LL bestsum,bestnum,n;

    void dfs(LL cur,LL sum,LL x,LL lim)
    {
        if(cur>n) return;
        if(sum>bestsum)
        {
            bestsum=sum;
            bestnum=cur;
        }
        if(sum==bestsum&&cur<bestnum)
        {
            bestnum=cur;
        }

        LL ret=1;
        for(int i=1;i<=lim;i++)
        {
            ret=ret*pri[x];
            if(ret*cur>n)
                break;
            else
                dfs(cur*ret,sum*(i+1),x+1,i);
        }
    }

    int main()
    {
    while(scanf("%lld",&n)!=EOF)
    {
        bestsum=0;
        dfs(1LL,1LL,0,50);
        printf("%lld ",bestnum);
    }
        return 0;
    }
    * This source code was highlighted by YcdoiT. ( style: Autumn )



  • 相关阅读:
    退出窗口时出现“当”的响声
    屏幕设备环境
    修改一个完全颜色的CListCtrl类
    修改一个完全颜色的CListCtrl类
    MFC中CString.Format的详细用法
    网上阅卷系统自动识别功能代码
    mfc 子对话框数据传给父对话框
    already defined in *.obj
    Object 的使用
    this 函数执行上下文
  • 原文地址:https://www.cnblogs.com/CKboss/p/3350911.html
Copyright © 2011-2022 走看看