zoukankan      html  css  js  c++  java
  • HDOJ 1005

    以下来自:http://www.cnblogs.com/krisdy/archive/2009/04/12/1434013.html
    1、必然会出现循环
    这是基于下面事实:
    1. R(n+2)=F(n+2) mod P=(F(n+1)+F(n)) mod P=(F(n+1) mod p +F(n) modp) mod p
    2. 斐波那契数列的最大公约数定理:gcd(F(m),F(n))=F(gcd(m,n))
    最大公约数定理表明如果F(k)能被N整除,则F(ik)也能被N整除,这就表明了斐波那契数列所含因子的周期性,下面列举:
    因子:2,3,4,5, 6,7,8, 9,10,11,12
    周期:3,4,6,5,12,8,6,12,15,10,12
    我们称所生成的序列为剩余序列,那么一旦出现某个F(k) 能被N整除(这需证明我的一个猜想:对于任意素数P,F(P),F(P-1)和F(P+1)三个中定有一个能被P整除),以后F(ik)都能被N整除,亦即剩余序列周期地出现0,下一个剩余序列值为N-1种可能,总会重复,有两个相邻的重复该序列就一定重复,亦即具有周期性。
    这个周期叫做皮萨诺周期
     2、正确思路是:因为mod7的关系,而且f(1)=f(2)=1,所以f(n)的值是循环分布的,而且一定会回到f(n-1)=f(n)=1,
    //并且还可得出,这个循环不大于49,因为相邻连个f只有7种取值,这样f(n-1)和f(n)共有49种组合。
    //所以,只要找出循环因子即可,寻找方法正是根据f(n-1)=f(n)再次出现的地方来计算
    //可以首先为这个题目写一个测试的程序设定一个 a   b   n(n 比较小时)  的值   看看输出规律
     3、只要找到k使f[k-1] = f[n-1],f[k-2]=f[n-2];特别地,当k等于2时就可以了,
    因为f[1],f[2]必然是循环的起始。又因为f[n-1],f[n-2]都只能取0到6共七个数,
    因此有49种组合方式,也就是说50内必然可以找到满足条件的k,就是循环周期小于50。



    #include <iostream>

    using namespace std;

    int func(int a,int b,int n)
    {
        if(n==1)  return 1;
        else if(n==2)  return 1;
        else return (a*func(a,b,n-1)%7+b*func(a,b,n-2)%7)%7;
    }
    int main()
    {
        int a,b,c;
        cin>>a>>b>>c;
        while(a!=0&&b!=0&&c!=0)
        {
        c=(c>48)?c%48:c;
        cout<<func(a,b,c)<<endl;
        cin>>a>>b>>c;
        }

        return 0;
    }


  • 相关阅读:
    Cocos2d JS 之消灭星星(六) 创建星星类
    Cocos2d JS 之消灭星星(五) 游戏主场景
    Cocos2d JS 之消灭星星(四) 游戏主场景顶部显示
    x1 carbon 扩展屏 模糊
    Linux MTD (Memory Technology Device) subsystem analysis -For Atheros char device
    putty 配置
    给Ubuntu更换成163的源(sources.list)Unable to locate package
    有道显示网络已断开
    Linux kernel 内核学习路线
    make only output error/warning message( 编译时,只输出错误信息和警告信息)
  • 原文地址:https://www.cnblogs.com/CKboss/p/3351146.html
Copyright © 2011-2022 走看看