zoukankan      html  css  js  c++  java
  • POJ 3071 Football

    很久以前就见过的。。。最基本的概率DP。。。
    除法配合位运算可以很容易的判断下一场要和谁比。    from——Dinic算法 

                            Football
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 2499   Accepted: 1258

    Description

    Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, …, 2n. In each round of the tournament, all teams still in the tournament are placed in a list in order of increasing index. Then, the first team in the list plays the second team, the third team plays the fourth team, etc. The winners of these matches advance to the next round, and the losers are eliminated. After n rounds, only one team remains undefeated; this team is declared the winner.

    Given a matrix P = [pij] such that pij is the probability that team i will beat team j in a match determine which team is most likely to win the tournament.

    Input

    The input test file will contain multiple test cases. Each test case will begin with a single line containing n (1 ≤ n ≤ 7). The next 2n lines each contain 2n values; here, the jth value on the ith line represents pij. The matrix P will satisfy the constraints that pij = 1.0 − pji for all i ≠ j, and pii = 0.0 for all i. The end-of-file is denoted by a single line containing the number −1. Note that each of the matrix entries in this problem is given as a floating-point value. To avoid precision problems, make sure that you use either the double data type instead of float.

    Output

    The output file should contain a single line for each test case indicating the number of the team most likely to win. To prevent floating-point precision issues, it is guaranteed that the difference in win probability for the top two teams will be at least 0.01.

    Sample Input

    2
    0.0 0.1 0.2 0.3
    0.9 0.0 0.4 0.5
    0.8 0.6 0.0 0.6
    0.7 0.5 0.4 0.0
    -1

    Sample Output

    2

    Hint

    In the test case above, teams 1 and 2 and teams 3 and 4 play against each other in the first round; the winners of each match then play to determine the winner of the tournament. The probability that team 2 wins the tournament in this case is:

    P(2 wins)  P(2 beats 1)P(3 beats 4)P(2 beats 3) + P(2 beats 1)P(4 beats 3)P(2 beats 4)
    p21p34p23 + p21p43p24
    = 0.9 · 0.6 · 0.4 + 0.9 · 0.4 · 0.5 = 0.396.

    The next most likely team to win is team 3, with a 0.372 probability of winning the tournament.

    Source

    Stanford Local 2006 

     

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 int n,N;
     8 double win[200][200];
     9 double dp[200][20];
    10 
    11 int main()
    12 {
    13     while(scanf("%d",&n)!=EOF&&n!=-1)
    14     {
    15         N=1<<n;
    16         for(int i=0;i<N;i++) for(int j=0;j<N;j++) scanf("%lf",&win[i][j]);
    17         memset(dp,0,sizeof(dp));
    18         for(int i=0;i<N;i++) dp[i][0]=1;
    19         for(int k=1;k<=n;k++)
    20         {
    21             int B=1<<(k-1);
    22             for(int i=0;i<N;i++)
    23             {
    24                 int temp=i/B;
    25                 for(int j=0;j<N;j++)
    26                 {
    27                     if((temp^1)==(j/B))
    28                         dp[i][k]+=dp[i][k-1]*dp[j][k-1]*win[i][j];
    29                 }
    30             }
    31         }
    32         int pos=0;
    33         for(int i=0;i<N;i++)
    34         {
    35             if(dp[i][n]>dp[pos][n]) pos=i;
    36         }
    37         printf("%d
    ",pos+1);
    38     }
    39 
    40     return 0;
    41 }
  • 相关阅读:
    Cocos2d-x场景生命周期函数介绍
    一致性hash算法在memcached中的使用
    linux操作系统下查看某rpm包是32bit 还是x64bit的命令
    JavaScript与Java通信
    DevExpress2011控件教程)编辑控件(comboBox,AspxCheckBox) 范例1
    Tips:javascript 图片放大和取得尺寸
    Eclipse颜色主题插件-Eclipse Color Theme
    Android Fragment 详解(一)
    《火球——UML大战需求分析》(第1章 大话UML)——1.4 如何学好UML?
    java.lang.UnsatisfiedLinkError: Native method not found 三种可能解决方案
  • 原文地址:https://www.cnblogs.com/CKboss/p/3394321.html
Copyright © 2011-2022 走看看