zoukankan      html  css  js  c++  java
  • UVALive 4329 Ping pong



                                      Ping pong
    Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

    [Submit]   [Go Back]   [Status]  

    Description

    Download as PDF
     

    N(3$ le$N$ le$20000) ping pong players live along a west-east street(consider the street as a line segment). Each player has a unique skill rank. To improve their skill rank, they often compete with each other. If two players want to compete, they must choose a referee among other ping pong players and hold the game in the referee's house. For some reason, the contestants can't choose a referee whose skill rank is higher or lower than both of theirs. The contestants have to walk to the referee's house, and because they are lazy, they want to make their total walking distance no more than the distance between their houses. Of course all players live in different houses and the position of their houses are all different. If the referee or any of the two contestants is different, we call two games different. Now is the problem: how many different games can be held in this ping pong street?

    Input

    The first line of the input contains an integer T(1$ le$T$ le$20) , indicating the number of test cases, followed by T lines each of which describes a test case.

    Every test case consists of N + 1 integers. The first integer is N , the number of players. Then N distinct integers a1a2...aN follow, indicating the skill rank of each player, in the order of west to east ( 1$ le$ai$ le$100000 , i = 1...N ).

    Output

    For each test case, output a single line contains an integer, the total number of different games.

    Sample Input

    1
    3 1 2 3

    Sample Output

    1

    Source

    Beijing 2008-2009

     

    枚举裁判的位置+树状数组

     

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 const int maxn=100010;
     8 
     9 int tree[maxn+10],n;
    10 
    11 inline int lowbit(int x) {return x&(-x);}
    12 
    13 void Init()
    14 {
    15     memset(tree,0,sizeof(tree));
    16 }
    17 
    18 int Add(int x)
    19 {
    20     while(x<=maxn)
    21     {
    22         tree[x]++;
    23         x+=lowbit(x);
    24     }
    25 }
    26 
    27 int getSum(int x)
    28 {
    29     int sum=0;
    30     while(x>0)
    31     {
    32         sum+=tree[x];
    33         x-=lowbit(x);
    34     }
    35     return sum;
    36 }
    37 
    38 struct node
    39 {
    40     int leftbig,leftsmall;
    41     int rightbig,rightsmall;
    42 }ND[20020];
    43 
    44 int bilib[20020];
    45 
    46 int main()
    47 {
    48     int t;
    49     scanf("%d",&t);
    50     while(t--)
    51     {
    52         long long int ans=0;
    53         scanf("%d",&n);
    54         int x;
    55         for(int i=1;i<=n;i++)
    56         {
    57             scanf("%d",&bilib[i]);
    58         }
    59         Init();
    60         for(int i=1;i<=n;i++)
    61         {
    62             ND[i].leftsmall=getSum(bilib[i]);
    63             Add(bilib[i]);
    64             ND[i].leftbig=i-1-ND[i].leftsmall;
    65         }
    66         Init();
    67         for(int i=n;i>=1;i--)
    68         {
    69             ND[i].rightsmall=getSum(bilib[i]);
    70             Add(bilib[i]);
    71             ND[i].rightbig=n-i-ND[i].rightsmall;
    72         }
    73         ///debug/*
    74         //for(int i=1;i<=n;i++)
    75         //{
    76         //    cout<<ND[i].leftsmall<<" , "<<ND[i].leftbig<<endl;
    77         //    cout<<ND[i].rightsmall<<" , "<<ND[i].rightbig<<endl;
    78         //    cout<<endl;
    79         //}
    80         ///.....*/
    81         for(int i=2;i<=n-1;i++)
    82         {
    83             ans+=1LL*((ND[i].leftsmall*ND[i].rightbig)+(ND[i].leftbig*ND[i].rightsmall));
    84         }
    85         cout<<ans<<endl;
    86     }
    87     return 0;
    88 }
  • 相关阅读:
    WPF学习笔记(三)
    WPF自定义控件——使用Win32控件
    WPF学习笔记(二)
    WPF自定义控件 —— 装饰器
    WPF中改进自定义Command一些想法
    WPF自定义控件 —— 布局
    制作WPF联机飞行棋的失败体验
    WPF自定义控件 —— 自绘篇
    c语言清屏、等待、随机函数
    c语言一个显示星号的函数(隐藏密码)
  • 原文地址:https://www.cnblogs.com/CKboss/p/3411493.html
Copyright © 2011-2022 走看看