zoukankan      html  css  js  c++  java
  • P2831 愤怒的小鸟

    题目描述

    Kiana最近沉迷于一款神奇的游戏无法自拔。

    简单来说,这款游戏是在一个平面上进行的。

    有一架弹弓位于(0,0)处,每次Kiana可以用它向第一象限发射一只红色的小鸟,小鸟们的飞行轨迹均为形如y=ax^2+bxy=ax2+bx的曲线,其中a,b是Kiana指定的参数,且必须满足a<0。

    当小鸟落回地面(即x轴)时,它就会瞬间消失。

    在游戏的某个关卡里,平面的第一象限中有n只绿色的小猪,其中第i只小猪所在的坐标为(xi,yi)。

    如果某只小鸟的飞行轨迹经过了(xi,yi),那么第i只小猪就会被消灭掉,同时小鸟将会沿着原先的轨迹继续飞行;

    如果一只小鸟的飞行轨迹没有经过(xi,yi),那么这只小鸟飞行的全过程就不会对第i只小猪产生任何影响。

    例如,若两只小猪分别位于(1,3)和(3,3),Kiana可以选择发射一只飞行轨迹为y=-x^2+4xy=x2+4x的小鸟,这样两只小猪就会被这只小鸟一起消灭。

    而这个游戏的目的,就是通过发射小鸟消灭所有的小猪。

    这款神奇游戏的每个关卡对Kiana来说都很难,所以Kiana还输入了一些神秘的指令,使得自己能更轻松地完成这个游戏。这些指令将在【输入格式】中详述。

    假设这款游戏一共有T个关卡,现在Kiana想知道,对于每一个关卡,至少需要发射多少只小鸟才能消灭所有的小猪。由于她不会算,所以希望由你告诉她。

    输入输出格式

    输入格式:

    第一行包含一个正整数T,表示游戏的关卡总数。

    下面依次输入这T个关卡的信息。每个关卡第一行包含两个非负整数n,m,分别表示该关卡中的小猪数量和Kiana输入的神秘指令类型。接下来的n行中,第i行包含两个正实数(xi,yi),表示第i只小猪坐标为(xi,yi)。数据保证同一个关卡中不存在两只坐标完全相同的小猪。

    如果m=0,表示Kiana输入了一个没有任何作用的指令。

    如果m=1,则这个关卡将会满足:至多用left lceil frac{n}{3} + 1 ight ceil3n+1⌉只小鸟即可消灭所有小猪。

    如果m=2,则这个关卡将会满足:一定存在一种最优解,其中有一只小鸟消灭了至少left lfloor frac{n}{3} ight floor3n⌋只小猪。

    保证1<=n<=18,0<=m<=2,0<xi,yi<10,输入中的实数均保留到小数点后两位。

    上文中,符号left lceil x ight ceilx⌉和left lfloor x ight floorx⌋分别表示对c向上取整和向下取整

    输出格式:

    对每个关卡依次输出一行答案。

    输出的每一行包含一个正整数,表示相应的关卡中,消灭所有小猪最少需要的小鸟数量

    输入输出样例

    输入样例#1:
    2
    2 0
    1.00 3.00
    3.00 3.00
    5 2
    1.00 5.00
    2.00 8.00
    3.00 9.00
    4.00 8.00
    5.00 5.00
    输出样例#1:
    1
    1
    输入样例#2:
    3
    2 0
    1.41 2.00
    1.73 3.00
    3 0
    1.11 1.41
    2.34 1.79
    2.98 1.49
    5 0
    2.72 2.72
    2.72 3.14
    3.14 2.72
    3.14 3.14
    5.00 5.00
    输出样例#2:
    2
    2
    3
    
    输入样例#3:
    1
    10 0
    7.16 6.28
    2.02 0.38
    8.33 7.78
    7.68 2.09
    7.46 7.86
    5.77 7.44
    8.24 6.72
    4.42 5.11
    5.42 7.79
    8.15 4.99
    输出样例#3:
    6
    

    说明

    【样例解释1】

    这组数据中一共有两个关卡。

    第一个关卡与【问题描述】中的情形相同,2只小猪分别位于(1.00,3.00)和 (3.00,3.00),只需发射一只飞行轨迹为y = -x^2 + 4x的小鸟即可消灭它们。

    第二个关卡中有5只小猪,但经过观察我们可以发现它们的坐标都在抛物线 y = -x^2 + 6x上,故Kiana只需要发射一只小鸟即可消灭所有小猪。

    【数据范围】

    思路:

      状压dp,用二进制中的1,0,代表这头猪有没有被打掉。、

      dp[i]表示i的二进制数表示的状态所需的小鸟数。

      每只小鸟也许能打掉多只猪,我们预处理bit[i][j] 表示,打i,j这两头猪的抛物线能打掉的那些猪。

      每次枚举强制打第一头猪,即可单独打,也可在打它的同时,打别的猪。

    #include<iostream>
    #include<queue>
    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    int t,n,m;
    const double d=1e-7;
    const int N=20;
    int bit[N][N],dp[1<<N];
    double x[N],y[N];
    double dabs( double t)
    {
        if( t< d)    return -t;
        return t;
    }
    int main()
    {
        scanf("%d",&t);
        while(t--)
        {
            scanf("%d%d",&n,&m);
            for(int i=1;i<=n;i++)
                scanf("%lf%lf",&x[i],&y[i]);
            for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
            {
                double f=x[i]*x[j]*(x[i]-x[j]);
                double ta=y[i]*x[j]-x[i]*y[j];
                double tb=y[j]*x[i]*x[i]-y[i]*x[j]*x[j];            
                bit[i][j]=0;
                if(f*ta<0)
                    for(int k=1;k<=n;k++)
                    if(dabs(ta*x[k]*x[k]+tb*x[k]-f*y[k])<=d)    
                        bit[i][j]|= 1<<(k-1);
            }
            memset(dp,127,sizeof  dp);
            dp[0]=0;
            for(int k=0;k<=(1<<n)-1;k++)
            {
                int i=1;
                while(k>>(i-1)&1)    i++;
                dp[(1<<(i-1))|k]=min(dp[(1<<(i-1))|k],dp[k]+1);
                for(int j=i+1;j<=n;j++)
                    dp[k|bit[i][j]]=min(dp[k|bit[i][j]],dp[k]+1);
            }
            printf("%d
    ",dp[(1<<n)-1]);
        }
        return 0;
    }
  • 相关阅读:
    Java中Runnable和Thread的区别
    JAVA Swing 事件监听
    java 监听机制模拟(JButton按钮监听机制)
    java事件处理机制(自定义事件)
    oracle之检查点(Checkpoint)
    linux内核值shmmax问题
    如何在VMware虚拟机间建立共享磁盘?
    Mysql 不同版本 说明
    mysql 概念和逻辑架构
    mysql 在大型应用中的架构演变
  • 原文地址:https://www.cnblogs.com/CLGYPYJ/p/7707878.html
Copyright © 2011-2022 走看看