【BZOJ3275】Number
Description
有N个正整数,需要从中选出一些数,使这些数的和最大。
若两个数a,b同时满足以下条件,则a,b不能同时被选
1:存在正整数C,使a*a+b*b=c*c
2:gcd(a,b)=1
Input
第一行一个正整数n,表示数的个数。
第二行n个正整数a1,a2,?an。
Output
最大的和。
Sample Input
5
3 4 5 6 7
3 4 5 6 7
Sample Output
22
HINT
n<=3000。
题解:先是无脑码了个最小割,果断WA了,看网上才又get了一个新定理
易证:奇数和奇数的平方和一定不是完全平方数,偶数和偶数的gcd一定不为1
然后就把所有的数分成奇数和偶数两个集合,然后再跑最小割就完事了
#include <cstdio>
#include <cstring>
#include <iostream>
#include <queue>
#include <algorithm>
#include <cmath>
using namespace std;
int n,cnt,tot,ans,tx,ty;
queue<int> q;
int vx[3010],vy[3010],next[1000000],head[6010],to[1000000],val[1000000],d[6010];
int gcd(int a,int b)
{
return (b==0)?a:gcd(b,a%b);
}
int dfs(int x,int mf)
{
if(x==n+1) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(temp,val[i]));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
int i,u;
memset(d,0,sizeof(d));
while(!q.empty()) q.pop();
q.push(0),d[0]=1;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==n+1) return 1;
q.push(to[i]);
}
}
}
return 0;
}
void add(int a,int b,int c)
{
to[cnt]=b;
val[cnt]=c;
next[cnt]=head[a];
head[a]=cnt++;
}
int main()
{
scanf("%d",&n);
int i,j,k;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
scanf("%d",&k);
tot+=k;
if(k&1) vx[++tx]=k;
else vy[++ty]=k;
}
for(i=1;i<=tx;i++) add(0,i,vx[i]),add(i,0,0);
for(i=1;i<=ty;i++) add(i+tx,n+1,vy[i]),add(n+1,i+tx,0);
for(i=1;i<=tx;i++)
{
for(j=1;j<=ty;j++)
{
if(gcd(vx[i],vy[j])!=1) continue;
int k=vx[i]*vx[i]+vy[j]*vy[j];
if(int(sqrt(k*1.0)+0.00001)*int(sqrt(k*1.0)+0.00001)==k)
{
add(i,tx+j,1<<30);
add(tx+j,i,0);
}
}
}
while(bfs()) ans+=dfs(0,1<<30);
printf("%d",tot-ans);
return 0;
}