zoukankan      html  css  js  c++  java
  • 【BZOJ4873】[Shoi2017]寿司餐厅 最大权闭合图

    【BZOJ4873】[Shoi2017]寿司餐厅

    Description

    Kiana最近喜欢到一家非常美味的寿司餐厅用餐。每天晚上,这家餐厅都会按顺序提供n种寿司,第i种寿司有一个代号ai和美味度di,i,不同种类的寿司有可能使用相同的代号。每种寿司的份数都是无限的,Kiana也可以无限次取寿司来吃,但每种寿司每次只能取一份,且每次取走的寿司必须是按餐厅提供寿司的顺序连续的一段,即Kiana可以一次取走第1,2种寿司各一份,也可以一次取走第2,3种寿司各一份,但不可以一次取走第1,3种寿司。由于餐厅提供的寿司种类繁多,而不同种类的寿司之间相互会有影响:三文鱼寿司和鱿鱼寿司一起吃或许会很棒,但和水果寿司一起吃就可能会肚子痛。因此,Kiana定义了一个综合美味度di,j(i<j),表示在一次取的寿司中,如果包含了餐厅提供的从第i份到第j份的所有寿司,吃掉这次取的所有寿司后将获得的额外美味度。由于取寿司需要花费一些时间,所以我们认为分两次取来的寿司之间相互不会影响。注意在吃一次取的寿司时,不止一个综合美味度会被累加,比如若Kiana一次取走了第1,2,3种寿司各一份,除了d1,3以外,d1,2,d2,3也会被累加进总美味度中。神奇的是,Kiana的美食评判标准是有记忆性的,无论是单种寿司的美味度,还是多种寿司组合起来的综合美味度,在计入Kiana的总美味度时都只会被累加一次。比如,若Kiana某一次取走了第1,2种寿司各一份,另一次取走了第2,3种寿司各一份,那么这两次取寿司的总美味度为d1,1+d2,2+d3,3+d1,2+d2,3,其中d2,2只会计算一次。奇怪的是,这家寿司餐厅的收费标准很不同寻常。具体来说,如果Kiana一共吃过了c(c>0)种代号为x的寿司,则她需要为这些寿司付出mx^2+cx元钱,其中m是餐厅给出的一个常数。现在Kiana想知道,在这家餐厅吃寿司,自己能获得的总美味度(包括所有吃掉的单种寿司的美味度和所有被累加的综合美味度)减去花费的总钱数的最大值是多少。由于她不会算,所以希望由你告诉她

    Input

    第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数。
    第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号。
    接下来n行,第i行包含n-i+1个整数,其中第j个数di,i+j-1表示吃掉寿司能
    获得的相应的美味度,具体含义见问题描述。
    N<=100,Ai<=1000

    Output

    输出共一行包含一个正整数,表示Kiana能获得的总美味度减去花费的总钱数的最大值。

    Sample Input

    3 1
    2 3 2
    5 -10 15
    -10 15
    15

    Sample Output

    【样例1说明】
    在这组样例中,餐厅一共提供了3份寿司,它们的代号依次为a1=2,a2=3,a3=2,计算价格时的常数m=1。在保证每次取寿司都能获得新的美味度的前提下,Kiana一共有14种不同的吃寿司方案:
    1.Kiana一个寿司也不吃,这样她获得的总美味度和花费的总钱数都是0,两者相减也是0;
    2.Kiana只取1次寿司,且只取第1个寿司,即她取寿司的情况为{[1,1]},这样获得的总美味度为5,花费的总钱数为1-2^2+1*2=6,两者相减为-1;
    3.Kiana只取1次寿司,且只取第2个寿司,即她取寿司的情况为{[2,2]},这样获得的总美味度为-10,花费的总钱数为1-3^2+1*3=12,两者相减为-22;
    4.Kiana只取1次寿司,且只取第3个寿司,即她取寿司的情况为{[3,3]},这样获得的总美味度为15,花费的总钱数为1*2^2+1*2=6,两者相减为9;
    5.Kiana只取1次寿司,且取第1,2个寿司,即她取寿司的情况为{[1,2]},这样获得的总美味度为5+(-10)+(-10)=-1
    5,花费的总钱数为(1-2^2+1*2)+(1-3^2+1*3)=18,两者相减为-33;
    6.Kiana只取1次寿司,且取第2,3个寿司,即她取寿司的情况为{[2,3]},这样获得的总美味度为(-10)+15+15=20,花费的总钱数为(1-2^2+1*2)+(1*3^2+1*3)=18,两者相减为2;
    7.Kiana只取1次寿司,且取第1,2,3个寿司,即她取寿司的情况为{[1,3]},这样获得的总美味度为5+(-10)+15+(-10)+15+15=30,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为10。
    8.Kiana取2次寿司,第一次取第1个寿司,第二次取第2个寿司,即她取寿司的情况为{[1,1],[2,2]},这样获得的总美味度为5+(-10)=-5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-23;
    9.Kiana取2次寿司,第一次取第1个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,1],[3,3]},这样获得的总美味度为5+15=20,花费的总钱数为1*2^2+2*2=8,两者相减为12;
    10.Kiana取2次寿司,第一次取第2个寿司,第二次取第3个寿司,即她取寿司的情况为{[2,2],[3,3]},这样获得的总美味度为(-10)+15=5,花费的总钱数为(1*2^2+1*2)+(1*3^2+1*3)=18,两者相减为-13;
    11.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第3个寿司,即她取寿司的情况为{[1,2],[3,3]},这样获得的总美味度为5+(-10)+(-10)+15=0,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-20;
    12.Kiana取2次寿司,第一次取第1个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,1],[2,3]},这样获得的总美味度为5+(-10)+15+15=25,花费的总钱数为(1-22+2-2)+(1-32+1-3)=20,两者相减为5;
    13.Kiana取2次寿司,第一次取第1,2个寿司,第二次取第2,3个寿司,即她取寿司的情况为{[1,2],[2,3]},这样获得的总美味度为5+(-10)+15+(-10)+15=15,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-5;
    14.Kiana取3次寿司,第一次取第1个寿司,第二次取第2个寿司,第三次取第3个寿司,即她取寿司的情况为{[1,1],[2,2],[3,3]},这样获得的总美味度为5+(-10)+15=10,花费的总钱数为(1*2^2+2*2)+(1*3^2+1*3)=20,两者相减为-10。
    所以Kiana会选择方案9,这时她获得的总美味度减去花费的总钱数的值最大为12。

    题解:考试的时候一眼就感觉是网络流,然后犹豫了下是最小割还是费用流,大致怎么连边也差不多了,然后就是没看出来是最大权闭合图(因为普通的最小割无法处理负权),最后写了个DFS交上去了~

    感觉是时候重新写一篇植物大战僵尸的博客了,连最大权闭合图都忘了~

    正题:我们先把d[i][j]列出来(由于样例给的是下三角所以不容易看出来)

    5   -10  15
         -10  15
                15

    所以当我们取d[i][j]的时候,相当于表格中在d[i][j]左下方的点全都要取,这好像需要连很多边,但其实我们只需要连左边和下面的两个点就可以了(即d[i+1][j]和d[i][j-1]),因为如果取这两个点,其左下角的点一定都取完了

    然后根据最大权闭合图的连边方法:

    从S向所有正权的点连边,边权为该点权值;
    所有负权的点向T连边,边权为该点权值相反数;
    从所有的寿司编号向T连边,边权为m*编号的平方;
    从所有的d[i][i]向T连边,边权为编号;
    从所有的d[i][i]向该寿司的编号连边,边权为∞;
    从所有的d[i][j](i<j)向d[i+1][j]和d[i][j-1]连边,边权为∞;

    讲道理代码一点也不长

    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <queue>
    using namespace std;
    int n,m,cnt,tot,sum,S,T,ans;
    int to[1000000],next[1000000],val[1000000],head[10000];
    int map[110][110],num[110][110],A[1010],d[10000];
    queue<int> q;
    int rd()
    {
    	int ret=0,f=1;	char gc=getchar();
    	while(gc<'0'||gc>'9'){if(gc=='-')f=-f;	gc=getchar();}
    	while(gc>='0'&&gc<='9')	ret=ret*10+gc-'0',gc=getchar();
    	return ret*f;
    }
    void add(int a,int b,int c)
    {
    	to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
    	to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
    }
    int bfs()
    {
    	while(!q.empty())	q.pop();
    	memset(d,0,sizeof(d));
    	d[S]=1,q.push(S);
    	int i,u;
    	while(!q.empty())
    	{
    		u=q.front(),q.pop();
    		for(i=head[u];i!=-1;i=next[i])
    		{
    			if(!d[to[i]]&&val[i])
    			{
    				d[to[i]]=d[u]+1;
    				if(to[i]==T)	return 1;
    				q.push(to[i]);
    			}
    		}
    	}
    	return 0;
    }
    int dfs(int x,int mf)
    {
    	if(x==T)	return mf;
    	int i,k,temp=mf;
    	for(i=head[x];i!=-1;i=next[i])
    	{
    		if(d[to[i]]==d[x]+1&&val[i])
    		{
    			k=dfs(to[i],min(temp,val[i]));
    			if(!k)	d[to[i]]=0;
    			val[i]-=k,val[i^1]+=k,temp-=k;
    			if(!temp)	break;
    		}
    	}
    	return mf-temp;
    }
    int main()
    {
    	n=rd(),m=rd();
    	int i,j,a;
    	T=n+n*(n+1)/2+1;
    	tot=n;
    	memset(head,-1,sizeof(head));
    	for(i=1;i<=n;i++)
    	{
    		a=rd();
    		if(!A[a])	A[a]=++tot,add(tot,T,m*a*a);
    		add(i,T,a),add(i,A[a],1<<30);
    	}
    	for(i=1;i<=n;i++)
    		for(j=i;j<=n;j++)
    			num[i][j]=(i==j)?i:(++tot);
    	for(i=1;i<=n;i++)
    	{
    		for(j=i;j<=n;j++)
    		{
    			map[i][j]=rd();
    			if(i!=j)	add(num[i][j],num[i][j-1],1<<30),
    				add(num[i][j],num[i+1][j],1<<30);
    			if(map[i][j]<0)	add(num[i][j],T,-map[i][j]);
    			else	add(S,num[i][j],map[i][j]),sum+=map[i][j];
    		}
    	}
    	while(bfs())	ans+=dfs(S,1<<30);
    	printf("%d",sum-ans);
    	return 0;
    }
  • 相关阅读:
    jQuery+d3绘制流程图OK
    jQuery+d3绘制流程图OK
    史上最全的后端技术大全,你都了解哪些技术呢?
    史上最全的后端技术大全,你都了解哪些技术呢?
    R语言面板数据分析步骤及流程
    R语言面板数据分析步骤及流程
    SQL Server之深入理解STUFF
    1048:有一门课不及格的学生
    1048:有一门课不及格的学生
    1047:判断能否被3,5,7整除
  • 原文地址:https://www.cnblogs.com/CQzhangyu/p/6770264.html
Copyright © 2011-2022 走看看