zoukankan      html  css  js  c++  java
  • 【BZOJ3239】Discrete Logging BSGS

    【BZOJ3239】Discrete Logging

    Description

    Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that

    BL== N (mod P)

    Input

    Read several lines of input, each containing P,B,N separated by a space, 

    Output

    for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".

    The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states

    B(P-1)== 1 (mod P)

    for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m

    B(-m)== B(P-1-m)(mod P) .

    Sample Input

    5 2 1
    5 2 2
    5 2 3
    5 2 4
    5 3 1
    5 3 2
    5 3 3
    5 3 4
    5 4 1
    5 4 2
    5 4 3
    5 4 4
    12345701 2 1111111
    1111111121 65537 1111111111

    Sample Output

    0
    1
    3
    2
    0
    3
    1
    2
    0
    no solution
    no solution
    1
    9584351
    462803587

    题解:BSGS裸题

    #include <cstdio>
    #include <cstring>
    #include <map>
    #include <iostream>
    #include <cmath>
    using namespace std;
    typedef long long ll;
    map<ll,int> mp;
    int main()
    {
    	ll A,B,P,i,x,y,m;
    	while(scanf("%lld%lld%lld",&P,&A,&B)!=EOF)
    	{
    		mp.clear(),mp[B]=0,m=ceil(sqrt(P));
    		for(x=1,i=1;i<=m;i++)	x=x*A%P,mp[x*B%P]=i;
    		for(y=1,i=1;i<=m;i++)
    		{
    			y=y*x%P;
    			if(mp.find(y)!=mp.end())
    			{
    				printf("%lld
    ",i*m-mp[y]);
    				break;
    			}
    		}
    		if(i==m+1)	printf("no solution
    ");
    	}
    	return 0;
    }
  • 相关阅读:
    HTML 布局
    HTML <div> 和<span>
    HTML 列表
    HTML 表格
    可视化反投射:坍塌尺寸的概率恢复:ICCV9论文解读
    智能座舱虚拟机系统
    深度学习白平衡(Color Constancy,AWB):ICCV2019论文解析
    面部表情视频中进行远程心率测量:ICCV2019论文解析
    高精地图中导航标识识别
    人脸标记检测:ICCV2019论文解析
  • 原文地址:https://www.cnblogs.com/CQzhangyu/p/6999726.html
Copyright © 2011-2022 走看看