【BZOJ1491】[NOI2007]社交网络
Description
在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s到t的最短路的数目;则定义
为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每一个结点的重要程度。
Input
输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500 ,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间的最短路径数目不超过 10^10
Output
输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。
Sample Input
4 4
1 2 1
2 3 1
3 4 1
4 1 1
1 2 1
2 3 1
3 4 1
4 1 1
Sample Output
1.000
1.000
1.000
1.000
1.000
1.000
1.000
HINT
社交网络如下图所示。
对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他三个结点的重要程度也都是 1 。
题解:在Floyd求最短路的时候,顺便统计f[i][j]表示从i到j的最短路条数,然后暴力统计即可。
#include <cstdio> #include <cstring> #include <iostream> #include <queue> #include <utility> #define mp(A,B) make_pair(A,B) using namespace std; typedef pair<int,int> pii; int n,m; double ans; int dis[110][110]; double f[110][110]; inline int rd() { int ret=0,f=1; char gc=getchar(); while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();} while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar(); return ret*f; } int main() { n=rd(),m=rd(); int i,j,k,a,b,c; memset(dis,0x3f,sizeof(dis)); for(i=1;i<=m;i++) a=rd(),b=rd(),c=rd(),dis[a][b]=dis[b][a]=c,f[a][b]=f[b][a]=1; for(i=1;i<=n;i++) dis[i][i]=0; for(k=1;k<=n;k++) for(i=1;i<=n;i++) for(j=1;j<=n;j++) { if(dis[i][j]>dis[i][k]+dis[k][j]) dis[i][j]=dis[i][k]+dis[k][j],f[i][j]=0; if(dis[i][j]==dis[i][k]+dis[k][j]) f[i][j]+=f[i][k]*f[k][j]; } for(k=1;k<=n;k++) { ans=0; for(i=1;i<=n;i++) if(i!=k) for(j=1;j<=n;j++) if(j!=k&&dis[i][j]==dis[i][k]+dis[k][j]) ans+=f[i][k]*f[k][j]/f[i][j]; printf("%.3lf ",ans); } return 0; }