zoukankan      html  css  js  c++  java
  • 【Coursera】因子分析模型

    一、协方差矩阵

    协方差矩阵为对称矩阵。

    在高斯分布中,方差越大,数据分布越分散,方差越小发,数据分布越集中。

    在协方差矩阵中,假设矩阵为二维,若第二维的方差大于第一维的方差,则在图像上的体现就是:高斯分布呈现一个椭圆形,且主轴对应的就是方差大的第二维度。简而言之,若对角线元素相等,则高斯分布的图形是圆形,反之则分布图形为椭圆形。

    若协方差矩阵的非对角元素为0,则高斯分布图形平行于坐标轴,反之则不平行。

    • 为什么当样本数量远小于特征向量的维数n时,协方差逆矩阵不存在(矩阵不满秩)?
      • 在多变量高斯分布中,协方差矩阵和均值刻画了每个维度的特征,n维可以理解为有n个未知量,每一个样本可以构造一个等式,如果样本数量小于未知量n,那么这个n元方程组将无法求解。
      • 此外,在多变量高斯分布中,公式里包含了协方差矩阵的行列式和逆矩阵,如果不满秩,则公式无法表达。
    • 为什么限制了协方差矩阵为对角矩阵,那么高斯分布的形状就会和坐标轴平行?
      • 限制协方差矩阵为对角矩阵,意味着不同维度之间的协方差为0,则会使得模型丢失了不同维度之间的相关性。

    二、因子分析模型

    • 为什么因子分析模型可以解决样本数量少于特征维度n的问题?
      • 假设对于某个问题,有m个n维的样本数据,若m小于n,则协方差矩阵就不可逆,高斯分布的公式也无法得解,而在因子分析模型中,将n维的数据视为由d维(d < n)的变量经过一定的变换得到的,从而降低了问题的维度,使得m > n。(个人理解,不一定对
      • 假设可以解释为:每个点x都是由d维正态随机变量z生成。
  • 相关阅读:
    附近有什么?8款可以查周边的App
    实体店里充话费要怎么弄
    怎样买手机号?
    手机号是SIM卡的号呢,还是买手机时就带的
    网站SSL证书在线检测
    未来什么行业最赚钱
    陈安之-如何选择最赚钱的行业
    斗鱼宣布获C轮15亿融资 直播行业进入资本时代
    2016年Godaddy最新域名转出教程
    GoDaddy账户间域名转移PUSH以及ACCEPT接受域名过户方法
  • 原文地址:https://www.cnblogs.com/CSLaker/p/8707732.html
Copyright © 2011-2022 走看看