zoukankan      html  css  js  c++  java
  • UVA10673 上下界问题

     1 #include <iostream>
     2 #include<cstdio>
     3 using namespace std;
     4 #define LL long long
     5 LL a,b,m,n,d;
     6 void ex_gcd(LL a,LL b,LL &x,LL &y,LL &d)
     7 {
     8     if(b==0){
     9         d=a,x=1,y=0;
    10     }
    11     else{
    12         ex_gcd(b,a%b,x,y,d);
    13         LL t=x;
    14         x=y,y=t-a/b*y;
    15     }
    16 }
    17 int main()
    18 {
    19     LL T;
    20     cin>>T;
    21     for(int i=0;i<T;i++)
    22     {
    23         LL x,y;
    24         cin>>x>>y;
    25         if(x%y==0){
    26             cout<<1<<' '<<y-1<<endl;
    27         }
    28         else{
    29             a=x/y,b=a+1;
    30             ex_gcd(a,b,m,n,d);
    31             cout<<m*x<<' '<<n*x<<endl;
    32         }
    33     }
    34     return 0;
    35 }

    Theorem

    For any two integers x and k there exists two more integers p and q such that:

    <!--[if !vml]--><!--[endif]-->

    It’s a fairly easy task to prove this theorem, so we’d not ask you to do that. We’d ask for something even easier! Given the values of x and k, you’d only need to find integers p and q that satisfies the given equation.

    <!--[if !supportEmptyParas]-->      <!--[endif]-->

    Input

    The first line of the input contains an integer, T (1≤T≤1000) that gives you the number of test cases. In each of the following T lines you’d be given two positive integers x and k. You can safely assume that x and k will always be less than 108.

    Output

    For each of the test cases print two integers: p and q in one line. These two integers are to be separated by a single space. If there are multiple pairs of p and q that satisfy the equation, any one would do. But to help us keep our task simple, please make sure that the values, <!--[if !vml]--><!--[endif]--> and <!--[if !vml]--><!--[endif]-->fit in a 64 bit signed integer.

    对于这道题目来说,要注意上下界的问题,当x%k==0时,它的上界和下界是一样的,因为答案有多种,输出一个即可,所以此时将答案定位1和k-1即可。

    在x%k!=0时,它的上界和下界相差1,那么很自然的想到它们的最大公约数为1,所以可以直接用扩展欧几里德算法。

    当然因为x是最大公约数的x倍,所以最后答案要乘上x

    代码如下:

  • 相关阅读:
    IP子网掩码格式转换
    错误: symbol lookup error: /usr/local/lib/libreadline.so.6: undefined symbol: PC
    postgresql删除属性
    postgresql 修改属性
    嵌套json的查询
    嵌套json
    关于array_agg 函数
    修改jsonb的属性
    Python中exec的使用
    RHSA-2017:2930-重要: 内核 安全和BUG修复更新(需要重启、存在EXP、本地提权、代码执行)
  • 原文地址:https://www.cnblogs.com/CSU3901130321/p/3861489.html
Copyright © 2011-2022 走看看