zoukankan      html  css  js  c++  java
  • NOIP2017 逛公园

    题目

    首先需要一个 Dijkstra 求最短路。设 (d_u) 表示从 (1)(u) 的最短路。

    (g_{u,j}) 表示从 (1) 点到 (u) 点,长度恰好等于 (j) 的路径种数。那么可以列出式子

    [g_{u,j}= egin{cases} 1(u=1,j=0)\ sum g_{v,j-c(v,u)}(otherwise) end{cases} ]

    。然后我们就可以 DP 了。

    慢着……为什么这题可以 DP 呢?

    DP 的一个必要条件是,不存在一个状态使得它向自己转移。假设本题中的某个状态能向自己转移,那么很明显原图中存在一个边权全为 (0) 的环。因此,判掉 (0) 环后,本题的状态转移就没有环了(实际上,一切 DP 的过程都可以看作一个以状态为点,以转移为边的有向图,且它一定是一个拓扑图)。

    现在有一个严重的问题:这个 DP 有 (Ncdot max d_i) 种状态,好像只能拿 (10) 分。

    我们发现, (K) 不是很大,想到设 (f_{u,j}) 表示从 (1) 点到 (u) 点,长度恰好等于 (d_u+j) 的路径种数。方程

    [f_{u,j}= egin{cases} 1(u=1,j=0)\ sum f_{v,d_u+j-c(v,u)-d_v}(otherwise) end{cases} ]

    。答案就是(sum_{j=0}^K f_{n,j})

    显然,状态一共只有 (O(NK)) 种。转移顺序不明显,可以用记忆化搜索实现;关于 (0) 环,只要在记忆化搜索的过程中顺便判判就好了。总时间复杂度(O(Mlog M+MK)),可以通过本题。

    #include<cstdio>
    #include<queue>
    #include<cstring>
    inline int read(){
    	int a=0;char c=getchar();
    	for(;c<48||c>57;c=getchar());for(;c>47&&c<58;a=a*10+c-48,c=getchar());
    	return a;
    }
    using namespace std;
    const int N=1e5+1,K=51;
    struct edge{int v,c,nxt;}g[400001];
    int n,m,l,M,s,f[N][K],used[N][K],d[N],head[N+N],k;
    inline int Push(int u,int v,int c){g[++k]=(edge){v,c,head[u]};head[u]=k;} 
    typedef pair<int,int>P;priority_queue<P,vector<P>,greater<P> >p; 
    inline int Sp(){
    	int u,v;
    	memset(d,127,sizeof d);
    	p.push(P(d[1]=0,1));
    	for(;!p.empty();){
    	  u=p.top().second;
    	  if(p.top().first>d[u]){p.pop();continue;}
    	  p.pop();
    	  for(int i=head[u];i;i=g[i].nxt)if(g[i].c+d[u]<d[v=g[i].v])
    		d[v]=d[u]+g[i].c,p.push(P(d[v],v));
    	}
    }
    inline int Mod(int a){return a>=M?a-M:a;}
    int dfs(int u,int k){
    	if(used[u][k])return-1;
    	if(f[u][k]<M)return f[u][k];
    	f[u][k]=u==1&&!k?1:0;
    	used[u][k]=1;
    	int v,t;
    	for(int i=head[u+n];i;i=g[i].nxt){v=g[i].v;
    	  t=k-d[v]-g[i].c+d[u];
    	  if(t>=0&&t<=l)
    		if(~dfs(v,t))f[u][k]=Mod(f[v][t]+f[u][k]);
    		else return f[u][k]=-1;
    	}used[u][k]=0;
    	return f[u][k];
    }
    int main()
    {
    	int u,v,c,fl;
    	int T=read();for(;T--;){
    	k=0;memset(head,0,sizeof head);
    	n=read();m=read();l=read();M=read();
    	for(;m--;)u=read(),v=read(),c=read(),Push(u,v,c),Push(v+n,u,c);
    	Sp();
    	for(int i=1;i<=n;i++)
    	  for(int j=0;j<=l;j++)
    		f[i][j]=M;
    	s=0;fl=1;memset(used,0,sizeof used);
    	for(int j=0;j<=l;j++)
    	  if(dfs(n,j)<0){fl=0;break;}
    	  else s=Mod(s+f[n][j]);
    	printf("%d
    ",fl?s:-1);
    	}return 0;
    }
    
  • 相关阅读:
    DHCP服务器
    继承、抽象、多态
    范围随机数Random
    阿里、北理工、清华以及华为的镜像站
    创建kafka生产对象
    kafka消费者的配置
    Kafka 流数据 SQL 引擎 -- KSQL
    认证maven工程
    基础算法
    Java基础
  • 原文地址:https://www.cnblogs.com/Camp-Nou/p/11815876.html
Copyright © 2011-2022 走看看