OTZ做出题目的神犇。。断断续续改完了在这里存一下思路吧
A题:第K大区间
题意:
定义一个区间的值为其众数出现的次数。
现给出n个数,求将所有区间的值排序后,第K大的值为多少。
分析:
二分答案mid,任务就是判定有多少个区间的众数≥mid。
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 100010; int n, A[maxn], c[maxn], cnt[maxn], mx, tmp[maxn]; ll k; void Add(int x){ cnt[c[x]] --; c[x] ++; cnt[c[x]] ++; mx = max(mx, c[x]); } void Del(int x){ cnt[c[x]] --; c[x] --; cnt[c[x]] ++; while(!cnt[mx])mx --; } int check(int x){ ll ans = 0, l = 1; mx = 0; memset(cnt, 0, sizeof cnt); memset(c, 0, sizeof c); cnt[0] = n; for(int i = 1; i <= n; i ++){ Add(A[i]); while(true){ Del(A[l]); if(mx < x) {Add(A[l]); break;} l ++; } if(mx >= x) ans += l; } return ans >= k; } int main(){ scanf("%d%d", &n, &k); for(int i = 1; i <= n; i ++){ scanf("%d", &A[i]); tmp[i] = A[i]; } sort(tmp+1, tmp+1+n); int p = unique(tmp+1, tmp+1+n) - tmp - 1; for(int i = 1; i <= n; i ++) A[i] = lower_bound(tmp+1, tmp+1+p, A[i]) - tmp; int l = 1, r = n+1; while(l < r){ int mid = l + (r - l + 1) / 2; if(check(mid))l = mid; else r = mid - 1; } printf("%d ", l); return 0; }
B题戳这里
C题:逛街
分析:
对于喜欢的店的个数一定要大于等于k,这个可以用一个堆来贪心,维护堆中的元素等于k个,对于其他的离散化一下扔进线段树(splay也不介意,但是好像会t)
然后在线段树上二分
注意val有负值a。。然后不能加a
#include <bits/stdc++.h> #define maxn 200010 using namespace std; typedef long long ll; int n, T, k, root, smz; int A[maxn], B[maxn], C[maxn]; long long sum[maxn]; priority_queue<pair<ll, int> > Q; int b[maxn]; struct Hash{ int id, p; ll val; bool operator<(const Hash& k)const{return val < k.val;} }h[maxn]; bool cmp(const Hash& a, const Hash& b){return a.p < b.p;} struct Node{ int l, r, size; ll sum; }t[maxn << 2]; #define lc id<<1 #define rc id<<1|1 void build(int id, int l, int r){ t[id].l = l, t[id].r = r; if(l == r)return; int mid = l+r >> 1; build(lc, l, mid); build(rc, mid+1, r); } void pushup(int id){ t[id].sum = t[lc].sum + t[rc].sum; t[id].size = t[lc].size + t[rc].size; } void update(int id, int pos, ll val){ if(val < 0)return; if(t[id].l == t[id].r){ t[id].sum = val; t[id].size ++; return; } int mid = t[id].l + t[id].r >> 1; if(pos <= mid)update(lc, pos, val); else update(rc, pos, val); pushup(id); } int ask(int id, ll T){ if(t[id].l == t[id].r)return min(t[id].size, (int)(T >= t[id].sum)); if(T >= t[lc].sum)return t[lc].size + ask(rc, T - t[lc].sum); return ask(lc, T); } int vis[maxn]; int main(){ scanf("%d%d%d", &n, &T, &k); for(int i = 1; i <= n; i ++)scanf("%d", &A[i]); for(int i = 1; i <= n; i ++)scanf("%d", &B[i]), h[i].val = B[i], h[i].p = i; for(int i = 1; i <= n; i ++)scanf("%d", &C[i]); sort(h+1, h+1+n); for(int i = 1; i <= n; i ++) h[i].id = i; sort(h+1, h+1+n, cmp); for(int i = 1; i <= n; i ++)b[i] = h[i].id; build(1, 1, n); int ans = 0; ll Sum = 0; for(int i = 1; i <= n; i ++){ if(C[i]){ if(Q.size() < k)Q.push(make_pair(B[i], i)), Sum += B[i]; else if(!Q.empty() && (Q.size() == k && B[i] < Q.top().first)){ ll t = Q.top().first; int t1 = Q.top().second;Q.pop(); Q.push(make_pair(B[i], i));Sum = Sum - t + B[i]; update(1, b[t1], t); }else update(1, b[i], B[i]); } else update(1, b[i], B[i]); if(Q.size() >= k && Sum + A[i] <= T)ans = max(ans, k + ask(1, T - Sum - A[i])); } if(ans < k)puts("-1"); else printf("%d ", ans); return 0; }
D题:Rikka with Sequences
题目大意:给定一个序列,有更改操作,每次查询一段区间的历史区间和最小值。
n, m ≤ 10^5, Ai ≤ 10^9
分析:
这个在线好难做a。所以就要离线la。所以就要用KD-tree啦。(QAQ)
对于每一个操作我们可以计算它对询问的贡献。把一个询问看成二维平面上的一个点(l, r),每一次操作都是将(pos, pos)左上角(l <= pos, r >= pos)的询问更改一下,通过打标记来实现历史最小值的询问。时光倒流,如果是每次给一个位置添加数字,询问历史最小值是个经典问题la
一定不要忘记pushdown。。。一定不要忘记mn[i]和mx[i]
#include <bits/stdc++.h> #define maxn 100010 using namespace std; typedef long long ll; const int inf = 0x7fffffff; int n, m, dfs_clock, D; //----------------------KD-tree--------------------------// struct Node{ int l, r, mn[2], mx[2], d[2], id; ll sum, add, ans, Minadd; int& operator[](const int& k){return d[k];} bool operator<(Node k)const{return d[D] < k[D];} Node(int x = 0, int y = 0, int i = 0, ll s = 0){ sum = ans = s, id = i; mn[0] = mx[0] = d[0] = x; mn[1] = mx[1] = d[1] = y; l = r = add = Minadd = 0; } }t[maxn], dfn[maxn], P; int tot, root; void update(int o){ for(int i = 0; i < 2; i ++){ t[o].mn[i] = t[o].mx[i] = t[o][i]; if(t[o].l){ t[o].mn[i] = min(t[o].mn[i], t[t[o].l].mn[i]); t[o].mx[i] = max(t[o].mx[i], t[t[o].l].mx[i]); } if(t[o].r){ t[o].mn[i] = min(t[o].mn[i], t[t[o].r].mn[i]); t[o].mx[i] = max(t[o].mx[i], t[t[o].r].mx[i]); } } } int Newnode(){ t[++ tot] = P; return tot; } inline void Down1(int o, ll val){ if(!o)return; t[o].ans = min(t[o].ans, t[o].sum + val); t[o].Minadd = min(t[o].Minadd, t[o].add + val); } inline void Down2(int o, ll val){ if(!o)return; t[o].ans = min(t[o].ans, t[o].sum += val); t[o].Minadd = min(t[o].Minadd, t[o].add += val); } inline void pushdown(int o){ if(t[o].Minadd){ Down1(t[o].l, t[o].Minadd), Down1(t[o].r, t[o].Minadd); t[o].Minadd = 0; } if(t[o].add){ Down2(t[o].l, t[o].add), Down2(t[o].r, t[o].add); t[o].add = 0; } } void Modify(int o, int pos, ll val){ pushdown(o); if(t[o].mx[0] <= pos && t[o].mn[1] >= pos) {Down2(o, val); return;} if(t[o][0] <= pos && t[o][1] >= pos)t[o].sum += val, t[o].ans = min(t[o].ans, t[o].sum); if(t[o].l && t[t[o].l].mn[0] <= pos && t[t[o].l].mx[1] >= pos)Modify(t[o].l, pos, val); if(t[o].r && t[t[o].r].mn[0] <= pos && t[t[o].r].mx[1] >= pos)Modify(t[o].r, pos, val); } void Insert(int o, int type){ pushdown(o), D = type; if(P < t[o]){ if(t[o].l)Insert(t[o].l, type^1); else t[o].l = Newnode(); } else{ if(t[o].r)Insert(t[o].r, type^1); else t[o].r = Newnode(); } update(o); } ll ans[maxn]; void dfs(int o){ pushdown(o); dfn[++ dfs_clock] = t[o]; ans[t[o].id] = t[o].ans; if(t[o].l)dfs(t[o].l); if(t[o].r)dfs(t[o].r); } int build(int l, int r, int type){ if(l > r)return 0; D = type; int mid = l + r >> 1; nth_element(dfn+l, dfn+mid, dfn+r+1); t[mid] = dfn[mid]; t[mid].l = build(l, mid-1, type^1); t[mid].r = build(mid+1, r, type^1); update(mid); return mid; } //----------------------query---------------------------// int tp[maxn], l[maxn], r[maxn]; //----------------------BIT-----------------------------// ll A[maxn], Bit[maxn]; #define lowbit(i) i&(~i+1) void add(int pos, ll val){ for(int i = pos; i <= n; i += lowbit(i)) Bit[i] += val; } ll ask(int pos){ if(!pos)return 0;ll ret = 0; for(int i = pos; i; i -= lowbit(i)) ret += Bit[i]; return ret; } //----------------------solve---------------------------// int main(){ root = Newnode(); t[root].mn[0] = t[root].mn[1] = inf; t[root].mx[0] = t[root].mx[1] = -inf; scanf("%d%d", &n, &m); for(int i = 1; i <= n; i ++) scanf("%lld", &A[i]), add(i, A[i]); for(int i = 1; i <= m; i ++){ scanf("%d%d%d", &tp[i], &l[i], &r[i]); if(tp[i] == 1){ r[i] -= A[l[i]];//增量 A[l[i]] += r[i]; add(l[i], r[i]); } } int Buf = 2000; for(int i = m; i >= 1; i --){ if(tp[i] == 1){ add(l[i], -r[i]); Modify(root, l[i], -r[i]); } else{ P = Node(l[i], r[i], i, ask(r[i]) - ask(l[i]-1)); Insert(root, 0); } if(i % Buf == 0)dfs_clock = 0, dfs(root), root = build(1, dfs_clock, 0); } dfs_clock = 0, dfs(root); for(int i = 1; i <= m; i ++) if(tp[i] == 2)printf("%lld ", ans[i]); return 0; }
E题:小Z的Tire
广义后缀自动机。倍增找到位置输出parent树中子树节点个数
#include <bits/stdc++.h> #define maxn 2000010 using namespace std; struct Node{int len, link, nxt[26];}st[maxn]; int root, size, last; int s[maxn]; void init(){ root = size = last = 0; st[root].len = 0; st[root].link = -1; } void Extend(char ch){ int c = ch - 'a', p = last, q = st[p].nxt[c]; if(q){ if(st[q].len == st[p].len + 1) last = q; else{ int clone = ++ size; st[clone] = st[q]; st[clone].len = st[p].len + 1; for(; ~p && st[p].nxt[c] == q; p = st[p].link) st[p].nxt[c] = clone; st[q].link = clone; last = clone; } } else{ int cur = ++ size; st[cur].len = st[p].len + 1; for(; ~p && !st[p].nxt[c]; p = st[p].link) st[p].nxt[c] = cur; if(p == -1) st[cur].link = root; else{ q = st[p].nxt[c]; if(st[q].len == st[p].len + 1) st[cur].link = q; else{ int clone = ++ size; st[clone] = st[q]; st[clone].len = st[p].len + 1; for(; ~p && st[p].nxt[c] == q; p = st[p].link) st[p].nxt[c] = clone; st[q].link = st[cur].link = clone; } } last = cur; } s[last] = 1; } int n; char c[maxn]; int anc[maxn][22]; int t[maxn], w[maxn]; void pre_anc(){ for(int i = 1; i <= size; i ++)w[st[i].len] ++; for(int i = 1; i <= size; i ++)w[i] += w[i-1]; for(int i = 1; i <= size; i ++)t[w[st[i].len] --] = i; for(int i = size; i >= 1; i --)s[st[t[i]].link] += s[t[i]]; memset(anc, -1, sizeof anc); for(int i = 1; i <= size; i ++) anc[i][0] = st[i].link; for(int j = 1; 1 << j <= size; j ++){ for(int i = 1; i <= size; i ++){ int a = anc[i][j-1]; if(~a)anc[i][j] = anc[a][j-1]; } } } vector<int>V[100010]; int ask_pos(int r, int len){ int now = r; for(int i = 21; i >= 0; i --){ int t = anc[now][i]; if(t == -1)continue; if(st[t].len >= len)now = t; } return now; } int main(){ init(); scanf("%d", &n); for(int i = 1; i <= n; i ++){ scanf("%s", c+1); int N = strlen(c+1); last = root; for(int j = 1; j <= N; j ++){ Extend(c[j]); V[i].push_back(last); } } pre_anc(); int m, u, v, d; scanf("%d", &m); for(int i = 1; i <= m; i ++){ scanf("%d%d%d", &u, &v, &d); printf("%d ", s[ask_pos(V[u][d-1], d-v+1)]); } return 0; }