zoukankan      html  css  js  c++  java
  • 摄像头标定

    void calRealPoint(std::vector<std::vector<cv::Point3f>>& obj, int boardwidth, int boardheight, int imgNumber, int squaresize)
    {
     //  Mat imgpoint(boardheight, boardwidth, CV_32FC3,Scalar(0,0,0)); 
     std::vector<cv::Point3f> imgpoint;
     for (int rowIndex = 0; rowIndex < boardheight; rowIndex++)
     {
      for (int colIndex = 0; colIndex < boardwidth; colIndex++)
      {
       //  imgpoint.at<Vec3f>(rowIndex, colIndex) = Vec3f(rowIndex * squaresize, colIndex*squaresize, 0); 
       imgpoint.push_back(cv::Point3f(rowIndex * squaresize, colIndex * squaresize, 0));
      }
     }
     for (int imgIndex = 0; imgIndex < imgNumber; imgIndex++)
     {
      obj.push_back(imgpoint);
     }
    }
    void Camera::initCameraparam()
    {
     intrinsic.create(3,3, CV_64FC1);
     distortion_coeff.create(5,1,CV_64FC1);
     intrinsic.at<double>(0, 0) = 256.8093262;   //fx        
     intrinsic.at<double>(0, 2) = 160.2826538;   //cx 
     intrinsic.at<double>(1, 1) = 254.7511139;   //fy 
     intrinsic.at<double>(1, 2) = 127.6264572;   //cy 
     intrinsic.at<double>(0, 1) = 0;
     intrinsic.at<double>(1, 0) = 0;
     intrinsic.at<double>(2, 0) = 0;
     intrinsic.at<double>(2, 1) = 0;
     intrinsic.at<double>(2, 2) = 1;
     /*
     k1 k2 p1 p2 p3
     */
     distortion_coeff.at<double>(0, 0) = -0.193740;  //k1 
     distortion_coeff.at<double>(1, 0) = -0.378588;  //k2 
     distortion_coeff.at<double>(2, 0) = 0.028980;   //p1 
     distortion_coeff.at<double>(3, 0) = 0.008136;   //p2 
     distortion_coeff.at<double>(4, 0) = 0;          //p3 
    }
    void Camera::outputCameraParam()
    {
     std::cout << "fx :" << intrinsic.at<double>(0, 0) << std::endl << "fy :" << intrinsic.at<double>(1, 1) << std::endl;
     std::cout << "cx :" << intrinsic.at<double>(0, 2) << std::endl << "cy :" << intrinsic.at<double>(1, 2) << std::endl;
     std::cout << "k1 :" << distortion_coeff.at<double>(0, 0) << std::endl;
     std::cout << "k2 :" << distortion_coeff.at<double>(1, 0) << std::endl;
     std::cout << "p1 :" << distortion_coeff.at<double>(2, 0) << std::endl;
     std::cout << "p2 :" << distortion_coeff.at<double>(3, 0) << std::endl;
     std::cout << "p3 :" << distortion_coeff.at<double>(4, 0) << std::endl;
    }
    void Camera::CameraInit()
    {
     cv::Mat img;
     int goodFeatNums = 0;
     cv::namedWindow("chessboard");
     //std::cout << "Plaeas input" << std::endl;
     //std::string
     std::string filename, filedir;
     int i = 0;
      while (goodFeatNums < imageNums)
     {
      filedir = "E:\Code_zoom\OpenCVcode\CV\CV\Camera_pic\Lpic\Lpic_";
      filename = filedir + std::to_string(i) + ".jpg";
      i++;
      rgbImage = cv::imread(filename, CV_LOAD_IMAGE_COLOR);
      cv::cvtColor(rgbImage,grayImage,CV_RGB2GRAY);
      cv::imshow("Reload Image",grayImage);
      bool isFind = findChessboardCorners(rgbImage, boardSize, corner, 0);
       if (isFind == true) //所有角点都被找到 说明这幅图像是可行的 
       {
        /*
        Size(5,5) 搜索窗口的一半大小
        Size(-1,-1) 死区的一半尺寸
        TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1)迭代终止条件
        */
        cornerSubPix(grayImage, corner, cv::Size(5, 5), cv::Size(-1, -1), cv::TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 20, 0.1));
        drawChessboardCorners(rgbImage, boardSize, corner, isFind);
        cv::imshow("chessboard", rgbImage);
        corners.push_back(corner);
        goodFeatNums++;
        std::cout << "The image is good" << std::endl;
       }
      else
      {
       std::cout << "The image is bad feature" << std::endl;
      }
      if (cv::waitKey(10) == 'q')
       break;
     }
     initCameraparam();
     print("initCamera successed");
     calRealPoint(objRealPoint, boardWidth, boardHeight, imageNums, squareSize);//计算世界坐标值
     print("cal real successed");
     cv::calibrateCamera(objRealPoint, corners, cv::Size(imageWidth, imageHeight), intrinsic, distortion_coeff, rvecs, tvecs, 0);
     //相机标定计算标定矩阵和偏移矩阵
     print("calibrateCamera successed");
     outputCameraParam();//打印矩阵值
     print("output successed");
     cv::Mat uImage;
     cv::undistort(rgbImage,uImage,intrinsic,distortion_coeff);
     //rgbImage 转换成一个无偏移的图像uImage,intriinsic是内参数,distortion_coeff 为相机外参数(畸变)
     cv::imshow("undistort image",uImage);
     cv::imshow("initial image",rgbImage);
     print("imshow OK");
     cv::waitKey(0);
    }
     
     
    参考地址:https://blog.csdn.net/xiaoxuebajie/article/details/78213573
  • 相关阅读:
    存储型 XSS 原理复现
    反射型 XSS 原理复现
    HTTP 简易理解
    Markdown 流程图语法
    Dirsearch 快速开始
    sqlmap 快速开始
    SQL 注入原理
    XSS 原理
    51nod 1835 完全图
    11.5 AM 请求
  • 原文地址:https://www.cnblogs.com/Carlsblog/p/9907948.html
Copyright © 2011-2022 走看看