zoukankan      html  css  js  c++  java
  • 数论 初步

    0x01 整除

    概念:(a, b in mathbb Z)(a eq 0),如果 (exists q in mathbb Z),使得 (a imes q = b),则 (b) 能被 (a) 整除,记为 (a mid b)


    性质:

    1. 传递性:如果 (a mid b)(b mid c),则 (a mid c)

    2.(a mid b)(a mid c) 则对于 (forall a, b in mathbb Z),有 (a mid (bx+cy))

    3.(m) 不为 (0),则 (a mid b) 等价于 (ma mid mb)

    4.(x,y in mathbb Z) 满足下式:(ax+by=1),且 (a mid n)(b mid n),那么 (ab mid n)

    5.(exists b, q, d, c in mathbb Z)(b = q imes d + c),那么 (d mid b)(d mid c) 可以互推。


    证明:

    1.(b = ak_a(k_a in mathbb Z)),且 (c = bk_b(k_b in mathbb Z))

    则有 (c = (ak_a)k_b)

    (c = k_ak_ba)

    其中 (k_a, k_b in mathbb Z)

    (∴ a mid c)


    2.(b = ak_b(k_b in mathbb Z)),且 (c = ak_c(k_c in mathbb Z))

    (∴ bx + cy = (ak_b)x + (ak_c)y)

    (bx + cy = a(k_bx + k_cy))

    其中 (k_b, k_c, x, y in mathbb Z)

    (∴ (k_bx + k_cy) in mathbb Z)

    (a mid (bx+cy))


    3.(b = ak_b(k_b in mathbb Z))

    (∴ mb = mak_b (k_b in mathbb Z))

    (m in mathbb Z, m eq 0)

    (∴ ma mid mb)


    4. (∵ ax + by = 1)

    (∴ frac x b + frac y a = frac 1 {ab})

    (∴ frac n {ab} = frac {xn} b + frac {ny} a)

    又由题: (ak_a = n, bk_b = n(k_a, k_b in mathbb Z))

    (∴ frac n {ab} = k_ay + k_bx)

    (n = ab(k_ay + k_bx))

    (∵ k_a, k_b, x, y in mathbb Z)

    (∴ ab mid n)


    5.1

    (b = d * k_b(k_b in mathbb Z))

    (∴ dk_b = qd + c)

    (d(k_b - q) = c)

    (∵ k_b, q in mathbb Z)

    (∴ (k_b - q) in mathbb Z)

    (d mid c)


    5.2(c = d * k_c(k_c in mathbb Z))

    (∴ b = qd + qk_c)

    (d(k_c + q) = b)

    (∵ k_c, q in mathbb Z)

    (∴ (k_c + q) in mathbb Z)

    (d mid b)


    0x02 mod

    概念: 对于(a,b in mathbb Z, b eq 0),求 (a) 除以 (b) 的余数,称为 (a)(b),记为 (a mod b)


    性质: 暂且研究 (a > 0, b geq 0)

    0. 杂论:((a + kb) mod b = a mod b)

    1. 分配率:模运算对加、减、乘具有分配率

    1.1 ((a + b) mod c = (a mod c + b mod c) mod c)

    1.2 ((a - b) mod c = (a mod c - b mod c) mod c)

    1.3 ((a imes b) mod c = [(a mod c) imes (b mod c)] mod c)

    1.4 ((a^b) mod c = (a mod c)^b mod c)

    2. 放缩性:

    2.1 如果 (a mod b = c, d eq 0),则有 ((a imes d) mod (b imes d) = c imes d)

    2.2 如果 (a mod b = c, d eq 0),则有 (frac a d mod frac b d = frac c d)


    证明:

    0.1 (a < b)

    (x = a + kb)

    根据 (mod) 的定义,(x mod b = a)

    所以 ((a + kb) mod b = a)


    0.2 (a geqslant b)

    (∴(a + kb) mod b = [(a - lfloor frac a b floor imes b) + (k + lfloor frac a b floor)b] mod b)

    由定义得:(a mod b = a - lfloor frac a b floor imes b)

    (∴[(a - lfloor frac a b floor imes b) + (k + lfloor frac a b floor)b] mod b = [a mod b + (k + lfloor frac a b floor)b] mod b)

    (∵ a mod b < b)

    然后用 0.1 解决即可。


    1.1(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

    (∴ (a + b) mod c = (c * q_a + r_a + c * q_b + r_b) mod c)

    ((a + b) mod c = [r_a + r_b + (q_a + q_b)c] mod c)

    0 得:((a + b) mod c = (r_a + r_b) mod c))

    (∵r_a = a mod c, r_b = b mod c)

    (∴ (a + b) mod c = (a mod c + b mod c) mod c)


    1.2(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

    (∴ (a - b) mod c = (c * q_a + r_a - c * q_b - r_b) mod c)

    ((a - b) mod c = [r_a - r_b + (q_a - q_b)c] mod c)

    0 得:((a - b) mod c = (r_a - r_b) mod c))

    (∵r_a = a mod c, r_b = b mod c)

    (∴ (a - b) mod c = (a mod c - b mod c) mod c)


    1.3(a = c * q_a + r_a, b = c * q_b + r_b (q_a, q_b, r_a, r_b in mathbb Z, r_a,rb < c))

    (∴ (a * b) mod c = [(c * q_a + r_a) * (c * q_b + r_b)] mod c)

    (∴ (a * b) mod c = (q_aq_bc^2 + q_ar_bc + q_br_ac + r_ar_b) mod c)

    即 $ (a * b) mod c = [r_a * r_b + c(q_aq_bc + q_ar_b + q_br_a)] mod c$

    0 得:((a * b) mod c = (r_a * r_b) mod c))

    (∵r_a = a mod c, r_b = b mod c)

    (∴ (a imes b) mod c = [(a mod c) imes (b mod c)] mod c)


    1.4

    1.3 得:

    ((a^b) mod c = (a imes a^{b - 1}) mod c = [(a mod c) imes (a ^ {b - 1} mod c)] mod c)

    ((a^b) mod c = [(a mod c) imes (a mod c) imes (a ^ {b - 2} mod c)] mod c)

    (...)

    ((a^b) mod c = [(a mod c) imes (a mod c) ... imes (a mod c)] mod c)


    2.1(a = b imes q_a + c)

    $∴ (a imes d) mod (b imes d) = (cd + bdq_a) mod bd $

    (∵ a mod b = c)

    (∴ c < b)

    (∵ d > 0)

    (∴ cd < bd)

    (∴)0.1 得:((a imes d) mod (b imes d) = (cd + bdq_a) mod bd = cd)


    2.1(a = b imes q_a + c)

    $∴ frac a d mod frac b d = (frac c d + frac {bq_a} d) mod frac b d $

    (∵ a mod b = c)

    (∴ c < b)

    (∵ d > 0)

    (∴ frac c d < frac b d)

    (∴)0.1 得:(frac a d mod frac b d = (frac c d + frac {bq_a} d) mod frac b d = frac c d)


    0x03 同余

    概念:(m) 为给定正整数,若满足 (m mid (a - b), a, b in mathbb Z),则称 (a)(b)(m) 同余。记作 (a equiv b pmod m)


    性质

    0. 一些基本性质:

    0.1 反身性:(a equiv a pmod m)

    0.2 对称性:(a equiv b pmod m),则 (b equiv a pmod m)

    0.3 传递性:(a equiv b pmod m),则 (b equiv c pmod m),则 (a equiv c pmod m)

    1. 同加性:若 (a equiv b pmod m),则 (a + c equiv b + c pmod m)

    2. 同减性:若 (a equiv b pmod m),则 (a - c equiv b - c pmod m)

    3. 同乘性:若 (a equiv b pmod m),则 (a imes c equiv b imes c pmod m)

    4. 同除性:若 (a equiv b pmod m, c mid a, c mid b, (c, m) = 1),则 (frac a c equiv frac b c pmod m)

    5. 同幂性:若 (a equiv b pmod m),则 (a^c equiv b^c pmod m)

    6.(a mod p = x, a mod q = x, (p, q) = 1),则 (a mod (p imes q) = x)


    1. 由题:(m mid (a - b))

    (∴ m mid [(a + c) - (b + c)])

    (∴ a + c equiv b + c pmod m)


    2. 由题:(m mid (a - b))

    (∴ m mid [(a - c) - (b - c)])

    (∴ a - c equiv b - c pmod m)


    3. 由题:(m mid (a - b))

    (∴ m mid [ac - bc])

    (∴ a imes c equiv b imes c pmod m)


    4.(a = k_ac, b = k_bc)

    (∴ p mid (k_a - k_b)c)

    (∵ (c, p) = 1)

    (∴ p mid (k_a - k_b))

    (∴ pc mid (k_ac - k_bc))

    (pc mid (a - b))

    (∴ p mid frac {a - b} c)

    (p mid (frac a c - frac b c))

    (∴frac a c equiv frac b c pmod m)


    5. 由题:(m mid (a - b))

    (∴ a^c - b^c = (a - b)(a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1}))

    (∵a, b in mathbb Z)

    (∴ (a^{c - 1} + a^{c - 2}b + ... + ab^{c - 2} + b^{c - 1}) in mathbb Z)

    (∴ (a - b) mid (a^c - b^c))

    (∴ m mid (a^c - b^c))

    (a^c equiv b^c pmod m)


    6. (∵ a mod p = x, a mod q = x)

    (∴p mid (a - x), q mid (a - x))

    (∴ a - x = pk_p, a - x = qk_q(k_p, k_q in mathbb Z))

    (pk_p = qk_q)

    (∵(p, q) = 1)

    (∴ k_p = kq(k in mathbb Z))

    (∴ a - x = pqk)

    (pq mid a - x)

    (a mod (p imes q) = x)

  • 相关阅读:
    springboot + 自定义配置文件读取
    springboot + mybatis分页插件pagehelper
    Python学习日记(三十九) Mysql数据库篇 七
    Python学习日记(三十八) Mysql数据库篇 六
    Python学习日记(三十七) Mysql数据库篇 五
    Python学习日记(三十六) Mysql数据库篇 四
    Python学习日记(三十五) Mysql数据库篇 三
    Python学习日记(三十四) Mysql数据库篇 二
    Python学习日记(三十三) Mysql数据库篇 一
    Python学习日记(三十二) hmac检验客户端的合法性和socketsever模块
  • 原文地址:https://www.cnblogs.com/Chain-Forward-Star/p/13868327.html
Copyright © 2011-2022 走看看