zoukankan      html  css  js  c++  java
  • 2019ACM-ICPC沈阳网络赛-K-Guanguan's Happy water

    Guanguan's Happy water

    4000ms 

    262144K

     

    Rather than drinking happy water, Guanguan loves storing happy water. So he bought a refrigerator and stored a_iai bottles of cola into it every day. When the storage is finished on the kk-th day, the refrigerator is full, but he still wants to store happy water every day. Here comes the solution: He first constructs a p-sequence: p_1p1p_2p2, ..., p_kpk, where p_1+p_2+...+p_k=1p1+p2+...+pk=1. Then he chooses an number ii among 11 to kk, where number ii has the probability p_ipi to be chosen. After that, he drinks the happy water stored on the ii-th day before the current day and stores the same amount of happy water back into the refrigerator again. Let the amount of happy water stored on the ii-th day be f_ifi. Given the amount of happy water stored in the first kk days and the expected amount of the next kk days(which means, from the k+1k+1-th day to the 2k2k-th day), could you help Guanguan figure out the sum of the expected amount of happy water stored during the first nn days) (Be aware that every element of ff has moded 1e9+71e9+7 when input datas, and your output should mod 1e9+71e9+7 as well)

    Input

    The first line is TT (1 le T le 201T20), indicating the number of input sets. For each set of inputs, the first line is kk and nn (1 le k le 701k70, 1 le n le 10^{18}1n1018), and the second line is 2k2k numbers, respectively representing a_1a1a_2a2, ..., a_kakf_{k+1}fk+1f_{k+2}fk+2, ..., f_{2k}f2k.

    Output

    For each data, output a non-negative integer indicating (sum_{i=1}^n f_i) mod 10^9+7(i=1nfi)mod109+7.

    样例输入

    2
    1 9
    2 2
    2 8
    6 5 5 5
    

    样例输出

    18
    41

    思路:

    suma=(a1+a2+。。。+ak)

    sumf=(f1+f2+。。。+f3)

    ①n<=k,ans=a1+a2+。。。+an;

    ②n<=2k,ans=suma+f1+f2+。。。+f(n-k);

    ③n>2k,ans=suma+((n-k)/k)*sumf+(   f1+f2+。。。+f( (n-k)%k )  ).

    注意取模就行

    AC代码:

     1 #include <bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 const int maxn=1e6+7;
     5 ll mod=1e9+7;
     6 ll a[maxn],f[maxn];
     7 int main()
     8 {
     9     int t;
    10     scanf("%d",&t);
    11     while(t--){
    12         int k;
    13         ll n,suma=0,sumf=0,k2;
    14         scanf("%d",&k);
    15         k2=ll(k);
    16         scanf("%lld",&n);
    17         for(int i=1;i<=k;++i)
    18             scanf("%lld",&a[i]),suma=(suma+a[i])%mod;
    19         for(int i=1;i<=k;++i)
    20             scanf("%lld",&f[i]),sumf=(sumf+f[i])%mod;
    21         ll ans=0;
    22         if(k2>=n){
    23             for(int i=1;i<=int(n);++i)
    24                 ans=(ans+a[i])%mod;
    25             printf("%lld
    ",ans%mod);
    26         }
    27         else{
    28             ans=suma%mod;
    29             ll nu=((n-k2)/k2);
    30             int len=n-nu*k2-k2;
    31             nu%=mod;
    32             ans=(nu*sumf+ans)%mod;
    33             for(int i=1;i<=len;++i)
    34                 ans=(ans+f[i])%mod;
    35             printf("%lld
    ",ans%mod);
    36         }
    37     }
    38     return 0;
    39 }
    40 /*
    41 2
    42 2 100000000000000000
    43 6 5 5 5
    44 */
  • 相关阅读:
    关于动态规划的问题494_LEETCODE_TARGET_SUM
    Python 关于二叉树生成、先序遍历、中序遍历、后序遍历、反转
    关于python引入文件路径的解决办法
    git一些笔记
    迪克斯特拉 算法(算最短距离)
    Python多线程编程中daemon属性的作用
    types.MethodType实例绑定方法
    Python之__getitem__、__getattr__、__setitem__ 、__setitem__ 的区别
    jenkins自动打包ios、安卓
    python socket编程tcp/udp俩连接
  • 原文地址:https://www.cnblogs.com/CharlieWade/p/11519645.html
Copyright © 2011-2022 走看看