zoukankan      html  css  js  c++  java
  • Opencv 学习笔记(二)——三小时精通Opencv(Project)

    参考:2020最新-3h精通Opencv

    代码


    1.颜色识别

    cv2.imread()和cv2.cvtColor() 的使用

    cv2.imread()和cv2.cvtColor() 的使用

    1、cv2.imread()接口读图像,读进来直接是BGR 格式数据格式在 0~255
    需要特别注意的是图片读出来的格式是BGR,不是我们最常见的RGB格式,颜色肯定有区别。
    2、cv2.cvtColor(p1,p2) 是颜色空间转换函数,p1是需要转换的图片,p2是转换成何种格式。
    cv2.COLOR_BGR2RGB 将BGR格式转换成RGB格式
    cv2.COLOR_BGR2GRAY 将BGR格式转换成灰度图片

    cv2.circle()

    cv2.circle(img, center, radius, color[, thickness[, lineType[, shift]]])
    作用
    根据给定的圆心和半径等画圆
    参数说明
    img:输入的图片data
    center:圆心位置
    radius:圆的半径
    color:圆的颜色
    thickness:圆形轮廓的粗细(如果为正)。负厚度表示要绘制实心圆。
    lineType: 圆边界的类型。
    shift:中心坐标和半径值中的小数位数。

    完整代码:

    import cv2
    import numpy as np
    
    frameWidth = 640
    frameHeight = 480
    cap = cv2.VideoCapture(0)
    #cap = cv2.VideoCapture(0, cv2.CAP_DSHOW)
    cap.set(3, frameWidth)
    cap.set(4, frameHeight)
    cap.set(10,150)
    
    #添加可以识别的颜色
    myColors = [[5,107,0,19,255,255],
                [133,56,0,159,156,255],
                [57,76,0,100,255,255]]
    myColorValues = [[51,153,255],
                     [255,0,255],
                     [0,255,0]]
    
    
    def findColor(img,myColors,myColorValues):
        imgHSV = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
        count = 0
        for color in myColors:
    
            lower = np.array(color[0:3])  #返回集合中,下标0至3的集合
            upper = np.array(color[3:6])
            mask = cv2.inRange(imgHSV, lower, upper)
    
            x,y = getContours(mask)
    
            cv2.circle(imgResult,(x,y),10,myColorValues[count],cv2.FILLED)
            count += 1
            #cv2.imshow(str(color[0]),mask)
    
    
    def getContours(img):
        contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
        x,y,w,h = 0,0,0,0
        for cnt in contours:
            area = cv2.contourArea(cnt)
            print(area)
            if area>500:
                cv2.drawContours(imgResult,cnt, -1, (255, 0, 0), 3)
                peri = cv2.arcLength(cnt,True)
                approx = cv2.approxPolyDP(cnt,0.02*peri,True)
                x, y, w, h = cv2.boundingRect(approx)
    
        return x+w//2,y
    
    
    while True:
        success, img = cap.read()
        imgResult = img.copy()
    
        findColor(img, myColors, myColorValues)
        cv2.imshow("Result", imgResult)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
    

    2.识别+提取 图片内容

    完整代码:

    import cv2
    import numpy as np
    
    
    ###################################
    widthImg=540
    heightImg =640
    #####################################
    
    cap = cv2.VideoCapture(0)
    
    cap.set(10,150)
    
    
    def preProcessing(img):
        imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        imgBlur = cv2.GaussianBlur(imgGray,(5,5),1)
        imgCanny = cv2.Canny(imgBlur,200,200)    #边缘检测
    
        # 给边缘加粗
        kernel = np.ones((5,5))
        imgDial = cv2.dilate(imgCanny,kernel,iterations=2)
        imgThres = cv2.erode(imgDial,kernel,iterations=1)
        return imgThres
    
    def getContours(img):
        biggest = np.array([])
        maxArea = 0
        contours,hierarchy = cv2.findContours(img,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
        for cnt in contours:
            area = cv2.contourArea(cnt)
            if area>5000:
                #cv2.drawContours(imgContour, cnt, -1, (255, 0, 0), 3)
                peri = cv2.arcLength(cnt,True)
                approx = cv2.approxPolyDP(cnt,0.02*peri,True)     #计算边数
                if area >maxArea and len(approx) == 4:
                    biggest = approx
                    maxArea = area
        cv2.drawContours(imgContour, biggest, -1, (255, 0, 0), 20)
        return biggest
    
    def reorder (myPoints):
        myPoints = myPoints.reshape((4,2))
        myPointsNew = np.zeros((4,1,2),np.int32)
        add = myPoints.sum(1)
        #print("add", add)
        myPointsNew[0] = myPoints[np.argmin(add)]
        myPointsNew[3] = myPoints[np.argmax(add)]
        diff = np.diff(myPoints,axis=1)
        myPointsNew[1]= myPoints[np.argmin(diff)]
        myPointsNew[2] = myPoints[np.argmax(diff)]
        #print("NewPoints",myPointsNew)
        return myPointsNew
    
    def getWarp(img,biggest):
        biggest = reorder(biggest)
        pts1 = np.float32(biggest)    # 获取最大轮廓
        pts2 = np.float32([[0, 0], [widthImg, 0], [0, heightImg], [widthImg, heightImg]])
        matrix = cv2.getPerspectiveTransform(pts1, pts2)
        imgOutput = cv2.warpPerspective(img, matrix, (widthImg, heightImg))
    
        imgCropped = imgOutput[20:imgOutput.shape[0]-20,20:imgOutput.shape[1]-20]
        imgCropped = cv2.resize(imgCropped,(widthImg,heightImg))
    
        return imgCropped
    
    
    def stackImages(scale,imgArray):
        rows = len(imgArray)
        cols = len(imgArray[0])
        rowsAvailable = isinstance(imgArray[0], list)
        width = imgArray[0][0].shape[1]
        height = imgArray[0][0].shape[0]
        if rowsAvailable:
            for x in range ( 0, rows):
                for y in range(0, cols):
                    if imgArray[x][y].shape[:2] == imgArray[0][0].shape [:2]:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (0, 0), None, scale, scale)
                    else:
                        imgArray[x][y] = cv2.resize(imgArray[x][y], (imgArray[0][0].shape[1], imgArray[0][0].shape[0]), None, scale, scale)
                    if len(imgArray[x][y].shape) == 2: imgArray[x][y]= cv2.cvtColor( imgArray[x][y], cv2.COLOR_GRAY2BGR)
            imageBlank = np.zeros((height, width, 3), np.uint8)
            hor = [imageBlank]*rows
            hor_con = [imageBlank]*rows
            for x in range(0, rows):
                hor[x] = np.hstack(imgArray[x])
            ver = np.vstack(hor)
        else:
            for x in range(0, rows):
                if imgArray[x].shape[:2] == imgArray[0].shape[:2]:
                    imgArray[x] = cv2.resize(imgArray[x], (0, 0), None, scale, scale)
                else:
                    imgArray[x] = cv2.resize(imgArray[x], (imgArray[0].shape[1], imgArray[0].shape[0]), None,scale, scale)
                if len(imgArray[x].shape) == 2: imgArray[x] = cv2.cvtColor(imgArray[x], cv2.COLOR_GRAY2BGR)
            hor= np.hstack(imgArray)
            ver = hor
        return ver
    
    while True:
        #success, img = cap.read()
        #使用摄像头
        #img = cv2.resize(img,(widthImg,heightImg))
    
        #使用图片
        img = cv2.imread("Resources/paper.jpg")
        imgContour = img.copy()
    
        imgThres = preProcessing(img)
        biggest = getContours(imgThres)
        if biggest.size !=0:
            imgWarped=getWarp(img,biggest)
            # imageArray = ([img,imgThres],
            #           [imgContour,imgWarped])
            imageArray = ([imgContour, imgWarped])
            cv2.imshow("ImageWarped", imgWarped)
        else:
            # imageArray = ([img, imgThres],
            #               [img, img])
            imageArray = ([imgContour, img])
    
        stackedImages = stackImages(0.6,imageArray)
        cv2.imshow("WorkFlow", stackedImages)
    
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
    
  • 相关阅读:
    Python学习之路(一)之Python基础1
    【第十一课】Tomcat原理解析【转】
    【第十课】Tomcat入门
    【第九课】MriaDB密码重置和慢查询日志
    【第八课】php-fpm.conf配置文件解析
    【第七课】Nginx反向代理和负载均衡
    【第六课】Nginx常用配置下详解
    maven项目中更新了核心库后导致一些包提示未定义,如:The import org.json cannot be resolved
    js代码突然在花括号回车自动多加了一个大括号
    SQL0419N 十进制除法运算无效,因为结果将有一个负小数位。 SQLSTATE=42911
  • 原文地址:https://www.cnblogs.com/Charon97/p/13657356.html
Copyright © 2011-2022 走看看