zoukankan      html  css  js  c++  java
  • HDU 2457(AC自动机+dp)

    传送门

    题面:

    Biologists finally invent techniques of repairing DNA that contains segments causing kinds of inherited diseases. For the sake of simplicity, a DNA is represented as a string containing characters 'A', 'G' , 'C' and 'T'. The repairing techniques are simply to change some characters to eliminate all segments causing diseases. For example, we can repair a DNA "AAGCAG" to "AGGCAC" to eliminate the initial causing disease segments "AAG", "AGC" and "CAG" by changing two characters. Note that the repaired DNA can still contain only characters 'A', 'G', 'C' and 'T'. 

    You are to help the biologists to repair a DNA by changing least number of characters.

    Input

    The input consists of multiple test cases. Each test case starts with a line containing one integers N (1 ≤ N ≤ 50), which is the number of DNA segments causing inherited diseases. 
    The following N lines gives N non-empty strings of length not greater than 20 containing only characters in "AGCT", which are the DNA segments causing inherited disease. 
    The last line of the test case is a non-empty string of length not greater than 1000 containing only characters in "AGCT", which is the DNA to be repaired. 

    The last test case is followed by a line containing one zeros.

    Output

    For each test case, print a line containing the test case number( beginning with 1) followed by the 
    number of characters which need to be changed. If it's impossible to repair the given DNA, print -1.

    Sample Input

    2
    AAA
    AAG
    AAAG    
    2
    A
    TG
    TGAATG
    4
    A
    G
    C
    T
    AGT
    0

    Sample Output

    Case 1: 1
    Case 2: 4
    Case 3: -1

    题意:

        给出一些不合法的模式DNA串,给出一个原串,问最少需要修改多少个字符,使得原串中不包含非法串

    题目分析:

        因为涉及多串匹配,因此我们考虑使用AC自动机进行求解。

        我们可以考虑如下dp,设为当前匹配到长度为i的字符串,是位于Trie树第j个结点所需要替换的最少次数。而在我们在AC自动机上匹配匹配串的过程中,我们可以发现,当且仅当下一个指向的结点与模式串的第i个字符不相同时,我们才将答案加1,此后不断维护最小值即可。

        即有状态转移方程:

        之后转移即可。

    代码:

    #include <bits/stdc++.h>
    #define maxn 1100
    using namespace std;
    int dp[maxn][maxn];
    int n;
    char s[maxn];
    char st[maxn];
    int tot=0;
    const int INF=0x3f3f3f3f;
    struct Trie{
        int next[maxn][4],fail[maxn],id,root,End[maxn];
        int newnode(){
            for(int i=0;i<4;i++){
                next[id][i]=-1;
            }
            End[id]=0;
            return id++;
        }
        void inti(){
            id=0;
            root=newnode();
        }
        int get_char(char str){
            if(str=='A') return 0;
            if(str=='T') return 1;
            if(str=='C') return 2;
            if(str=='G') return 3;
        }
        void Insert(char *str){
            int len=strlen(str);
            int now=root;
            for(int i=0;i<len;i++){
                if(next[now][get_char(str[i])]==-1){
                    next[now][get_char(str[i])]=newnode();
                }
                now=next[now][get_char(str[i])];
            }
            End[now]=1;
        }
        void build(){
            fail[root]=root;
            queue<int> que;
            for(int i=0;i<4;++i){
                if(next[root][i]==-1)
                    next[root][i]=root;
                else{
                    fail[next[root][i]]=root;
                    que.push(next[root][i]);
                }
            }
            while(!que.empty()){
                int now=que.front();
                que.pop();
                if(End[fail[now]]) End[now]=true;
                for(int i=0;i<4;++i){
                    if(next[now][i]==-1)
                        next[now][i]=next[fail[now]][i];
                    else{
                        fail[next[now][i]]=next[fail[now]][i];
                        que.push(next[now][i]);
                    }
                }
            }
        }
        void solve(char *str){
            int len=strlen(str);
            for(int i=0;i<=len;i++){
                for(int j=0;j<id;j++){
                    dp[i][j]=INF;
                }
            }
            dp[0][0]=0;
            for(int i=0;i<len;i++){
                for(int j=0;j<id;j++){
                    if(dp[i][j]!=INF){
                        for(int k=0;k<4;k++){
                            if(End[next[j][k]]) continue;
                            int tmp;
                            if(get_char(str[i])==k) tmp=dp[i][j];
                            else tmp=dp[i][j]+1;
                            dp[i+1][next[j][k]]=min(dp[i+1][next[j][k]],tmp);
                        }
                    }
                }
            }
            int res=INF;
            for(int i=0;i<id;i++){
                res=min(dp[len][i],res);
            }
            printf("Case %d: ",++tot);
            if(res==INF) puts("-1");
            else cout<<res<<endl;
        }
    }ac;
    int main()
    {
        int n;
        while(~scanf("%d",&n)){
            if(!n) break;
            ac.inti();
            for(int i=0;i<n;i++){
                scanf("%s",st);
                ac.Insert(st);
            }
            scanf("%s",s);
            ac.build();
            ac.solve(s);
        }
    }
    
  • 相关阅读:
    转 meta标签之详解
    面向过程分析方法和面向对象分析方法区别到底在哪里
    几大开发模型区别与联系
    第6周作业
    第5次作业
    第四次作业
    4.回合制战斗游戏中需要哪些基本的元素或者属性来达到战斗乐趣?
    需求获取常见的方法是进行客户访谈,结合你的实践谈谈会遇到什么问题,你是怎么解决的?
    4.你认为一些军事方面的软件系统采用什么样的开发模型比较合适?
    作业三
  • 原文地址:https://www.cnblogs.com/Chen-Jr/p/11007217.html
Copyright © 2011-2022 走看看