zoukankan      html  css  js  c++  java
  • Codeforces 982C(dfs)

    传送门

    题面:

    C. Cut 'em all!
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You're given a tree with nn vertices.

    Your task is to determine the maximum possible number of edges that can be removed in such a way that all the remaining connected components will have even size.

    Input

    The first line contains an integer nn (1n1051≤n≤105) denoting the size of the tree.

    The next n1n−1 lines contain two integers uuvv (1u,vn1≤u,v≤n) each, describing the vertices connected by the ii-th edge.

    It's guaranteed that the given edges form a tree.

    Output

    Output a single integer kk — the maximum number of edges that can be removed to leave all connected components with even size, or 1−1if it is impossible to remove edges in order to satisfy this property.

    Examples
    input
    Copy
    4
    2 4
    4 1
    3 1
    
    output
    Copy
    1
    input
    Copy
    3
    1 2
    1 3
    
    output
    Copy
    -1
    input
    Copy
    10
    7 1
    8 4
    8 10
    4 7
    6 5
    9 3
    3 5
    2 10
    2 5
    
    output
    Copy
    4
    input
    Copy
    2
    1 2
    
    output
    Copy
    0
    Note

    In the first example you can remove the edge between vertices 11 and 44. The graph after that will have two connected components with two vertices in each.

    In the second example you can't remove edges in such a way that all components have even number of vertices, so the answer is 1−1.

    题目描述:

        给你一个有n个结点的树,其中有n-1条边,询问你最多你可以移动多少条边,使得每个强连通分量的个数均为偶数。

    题目分析:

        因为我们知道,如果所给的结点的个数是奇数,那么,因为奇数必定是由一个偶数和一个奇数组成,故总会有一个强连通分量的个数为奇数,因此当n为奇数使,答案为0。

        那么当n等于偶数的时,我们只需要进行dfs遍历整张图,统计一下某个结点以及其儿子结点的数量,如果递归到最底时统计出的数量为偶数,则答案+1即可。

    代码:

    #include <bits/stdc++.h>
    #define maxn 200005
    using namespace std;
    struct edge{
        int to,next;
    }q[maxn];
    int head[maxn];
    int sizz[maxn];
    int cnt=0;
    int ans=0;
    void init(){
        memset(head,-1,sizeof(head));
        cnt=0;
    }
    void add_edge(int from,int to){
        q[cnt].next=head[from];
        q[cnt].to=to;
        head[from]=cnt++;
    }
    void dfs(int x,int fa){
        sizz[x]=1;
        for(int i=head[x];i!=-1;i=q[i].next){
            if(q[i].to==fa) continue;
            dfs(q[i].to,x);
            sizz[x]+=sizz[q[i].to];
        }
        if(sizz[x]%2==0) ans++,sizz[x]=0;
    }
    int main()
    {
        int n;
        cin>>n;
        init();
        for(int i=0;i<n-1;i++){
            int a,b;
            cin>>a>>b;
            add_edge(a,b);
            add_edge(b,a);
        }
        if(n&1) {
            puts("-1");
            return 0;
        }
        dfs(1,-1);
        cout<<ans-1<<endl;
    }

  • 相关阅读:
    poj2452
    bnuoj16491
    1326: The contest(并查集+分组背包)
    BNUOJ-1065或运算的简单解法
    递推、规律思维题总结
    uva10160(dfs+状态压缩)
    第七章 人工智能,7.1 基于深度强化学习与自适应在线学习的搜索和推荐算法研究(作者:灵培、霹雳、哲予)
    第六章 大数据,6.3 突破传统,4k大屏的沉浸式体验(作者: 彦川、小丛)
    第六章 大数据,6.2 双11背后的大规模数据处理(作者:惠岸 朋春 谦乐)
    第六章 大数据,6.1 双11数据大屏背后的实时计算处理(作者:藏六 黄晓锋 同杰)
  • 原文地址:https://www.cnblogs.com/Chen-Jr/p/11007287.html
Copyright © 2011-2022 走看看