zoukankan      html  css  js  c++  java
  • (Pytorch)涉及的常见操作

    涉及一些pytorch的API内容在此进行整理

    损失函数:Binary-Cross-Entropy loss

    criterion = nn.BCECriterion()

    创建一个标准来度量目标和输出之间的二值交叉熵

    $CrossEntropy(t,o) = -(t*log(o) + (1-t) * log(1-o)) $ 

    这是用来测量误差的重建,例如一个自动编码器。


    卷积操作 2Dconv spatial conv

    module = nn.SpatialConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH])

    各参数的意义

    nInputPlane: 输入图像的通道数
    nOutputPlane: 卷积层输出数据的通道数(Caffe中的num_output)
    kW: 卷积核窗口宽度
    kH: 卷积核窗口长度
    dW: 卷积窗口沿宽边方向上的移动步距,默认值为1
    dH: 卷积窗口沿长边方向上的移动步距,默认值为1
    padW, padH: 输入补零,默认值是0,比较好的设置是(kW-1)/2,可以保证卷积后feature map的plane size与输入的plane size一致。

    卷积操作  空间全卷积  spatial full conv

    module = nn.SpatialFullConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH], [adjW], [adjH])

    咋一看与SpatialConvolution基本一致,只是多了两个参数而已。在其他框架下,这一操作相当于: “In-network Upsampling”, “Fractionally-strided convolution”, “Backwards Convolution,” “Deconvolution”, or “Upconvolution. 及反卷积

    各参数的意义:

    nOutputPlane: 卷积层输出数据的通道数(Caffe中的num_output)
    kW: 卷积核窗口宽度
    kH: 卷积核窗口长度
    dW: 卷积窗口沿宽边方向上的移动步距,默认值为1
    dH: 卷积窗口沿长边方向上的移动步距,默认值为1
    padW, padH: 输入补零,默认值是0,比较好的设置是(kW-1)/2,可以保证卷积后feature map的plane size与输入的plane size一致
    adjW: 额外加上一定的宽度或者高度到输出图像中,默认值是0,但是不能超过dW-1/dH-1。

    因为spatial full conv 是等同于上采样或者叫做反卷积,所以他的输出feature map的计算公式与一般的conv 是不同的:

    owidth  = (width  - 1) * dW - 2*padW + kW + adjW
    oheight = (height - 1) * dH - 2*padH + kH + adjH
  • 相关阅读:
    强化学习
    详解a标签中href=""的几种用法 锚点
    使用Django自带的登录访问限制login_required
    ValueError: invalid literal for int() with base 10: ''
    Django 中创建Model时报以下错误: TypeError: init() missing 1 required positional argument: ‘on_delete’
    bootstrp实现同一界面多个模态框
    第十二章 Django框架开发
    Python format 格式化函数
    Python3.x在django中如何设置Content-Disposition,才能让浏览器正确保存中文命名的文件?
    python中的*和**参数传递机制
  • 原文地址:https://www.cnblogs.com/ChenKe-cheng/p/11213197.html
Copyright © 2011-2022 走看看