zoukankan      html  css  js  c++  java
  • 第三部分 概率_3 多维随机变量的分布

    3、 多维随机变量的分布

    (1)多项分布

      可参见https://blog.csdn.net/jteng/article/details/54632311

      多项分布是对二项分布的扩展,二项分布是单变量分布,而多项分布式多变量分布。

      二项分布每次试验试验只有两种结果,而多项分布每次试验则会有多种可能性,那么进行多次的试验后,多项分布描述的就是每种可能发生次数的联合概率分布

     

    (2)Gamma函数

    首先说一下先验概率和后验概率的区别,然后再进行下面的步骤:

      验前概率就是通常说的概率;

      验后概率是一种条件概率,但条件概率不一定是验后概率;

     我们常用的贝叶斯公式就是由验前概率求延后概率的公式;

    举一个简单的例子:一口袋里有3只红球、2只白球,采用不放回方式摸取,求:
    ⑴ 第一次摸到红球(记作A)的概率;
    ⑵ 第二次摸到红球(记作B)的概率;
    ⑶ 已知第二次摸到了红球,求第一次摸到的是红球的概率。
    解:

      ⑴ P(A)=3/5,这就是验前概率;
      ⑵ P(B)=P(A)P(B|A)+P(A逆)P(B|A逆)=(3/5)×(1/2)+(2/5)×(3/4)  = 3/5
      ⑶ P(A|B)=P(A)P(B|A)/P(B)=(3/5)×(1/2)/(3/5)=1/2,这就是验后概率。

      Beta分布于Dirichlet分布的定义域均为【0,1】,在实际生活中,Beta分布描述的是单变量分布,Dirichlet分布描述的是多变量分布。

      于是乎,Beta分布可以作为二项分布的先验概率Dirichlet分布可以作为多项分布的先验概率

      由于这两个分布均用到了Gamma函数,所以必须先了解Gamma函数。

      Gamma函数的表达式为其中,x>0

      Gamma函数有如下性质:

      具体推导如下:

      

      Gamma函数在Beta分布和Dirichlet分布中起到了归一化的作用。

     

      1)Beta分布

      与连续随机变量的分布不同,Beta分布描述的是定义在区间【0,1】上随机变量的概率分布,由两个参数其概率密度函数为

    (1) 当均 >1时,Beta分布为上凸的单峰曲线

    (2)当一个大于1,一个小于1时,Beta分布为下凸的的单调函数

    (3)当均 = 1时,Beta分布为常数函数

     

    Beta分布的概率密度曲线如下所示:

     

      说明:由于Beta分布式定义在区间【0,1】上的,所以适合作为概率的分布(例如机器的维修率、市场的占有率等等)

      Beta分布的均值和方差分别为:

    2)狄利克雷分布(Dirichlet分布)

    Dirichlet分布的每一个随机变量的统计量如下:

     

      说明:由于Dirichlet分布描述的是多个定义在区间【0,1】上的随机变量的概率分布,所以通常将其用作多项分布参数 的概率分布。

    (3)二维随机变量

      1)二维连续随机变量

    2)二维离散随机变量

     

    (4)二维连续分布

      1)二维均匀分布

      设G是平面上的有界区域,其面积为A,若二维随机随机变量(X,Y)具有如下的概率密度函数,

      向平面上有界区域G上任意投一个质点,如果质点落在G内任意一个小区域B的概率与小区域的面积成正比,与小区域B的形状与位置无关,那么质点的坐标(X,Y)在G上服从均匀分布。

      2)二维正态分布

    说明:表示X和Y之间的相关系数。

    二维正态分布的边缘密度还是一维的正态分布:

    相互独立的两个一维正态构成的二位随机变量是服从二维正态的。

     

     

     

  • 相关阅读:
    SQLServer中通过脚本内容查找存储过程
    TensorFlow学习笔记——节点(constant、placeholder、Variable)
    解决方案:System.InvalidOperationException: 此实现不是 Windows 平台 FIPS 验证的加密算法的一部分。
    通过网页或Serverice远程系统网站(服务)所在服务器本地的应用程序(未成功)
    (MSSQL)sp_refreshview刷新视图失败及更新Table字段失败的问题解决
    创建自己的代码片段(CodeSnippet)
    vue 创建监听,和销毁监听(addEventListener, removeEventListener)
    vue 运行时报 dependency was not found:错误
    Git 本地创建分支并提交远程分支
    vue自定义组件(通过Vue.use()来使用)即install的使用
  • 原文地址:https://www.cnblogs.com/Cheryol/p/12593650.html
Copyright © 2011-2022 走看看