zoukankan      html  css  js  c++  java
  • CV 第九课 CNN框架 GoogleNet

    1. 22层神经网络,一层inception算两层

    2. 使用了高效的inception结构

    3.没有全连接层

    4.只有5millon参数,比AlexNet的60M,VGG16的138M

    Inception Module 的好处:

      解释1:在直观感觉上在多个尺度上同时进行卷积,能提取到不同尺度的特征。特征更为丰富也意味着最后分类判断时更加准确。

      解释2:利用稀疏矩阵分解成密集矩阵计算的原理来加快收敛速度。 传统的网络filter是只有3*3*depth,这样的输出会非常均匀,这可以理解成输出了一个稀疏分布的特征集;

           而inception模块,采用多个卷积核(1*1,3*3,5*5),在不同尺度上提取特征,输出的256个特征就是相关性强的聚集在一起,’冗余‘信息较少,这样的数据集在bp收敛快。

      解释3: fire togethter, wire together  ,把相关性强的特征汇聚到一起。

      观点来自博文https://www.cnblogs.com/leebxo/p/10315490.html

    Inception Module:

      Naive Inception Module:  直接将三个卷积层与一个池化层的输出cat到一起

      问题: 复杂度太高

    解决方法:  “bottleneck” layers that use 1x1 convolutions to reduce feature depth, 将depth减半,操作就减少到原来的四分之一。

    这帮助减小了一大半的计算量,加深了深度

    作用1:在相同尺寸的感受野中叠加更多的卷积,能提取到更丰富的特征。这个观点来自于Network in Network(NIN, ),图1里三个1x1卷积都起到了该作用。

      这是因为每次卷积以后,都会有ReLu,这样会提取到更多非线性特征。

    作用2: 减少了计算量/复杂度

     

    额外有两个地方产生 辅助输出

      AvgPool - > Conv -> FC -> FC -> Softmax -> 辅助输出

      1. 辅助输出不是为了获得更好的分类性能,这是为了将额外的梯度直接注入网络下层的方法。 但是现在有了 Batch Normalization 就不太需要这些技巧来让模型收敛了。

     

  • 相关阅读:
    iOS开发UI篇—Modal简单介绍
    iOS开发UI篇—APP主流UI框架结构
    A1081. Rational Sum
    A1049. Counting Ones
    A1008. Elevator
    A1104. Sum of Number Segments
    B1003. 我要通过!
    二分查找、two points、排序
    A1069. The Black Hole of Numbers
    A1101. Quick Sort
  • 原文地址:https://www.cnblogs.com/ChevisZhang/p/12981721.html
Copyright © 2011-2022 走看看