zoukankan      html  css  js  c++  java
  • bzojP3512: [POI2010]PIL-Pilots

    Pre

    一道不太难的蓝题,有一点需要注意。

    Solution

    四次单调队列(少几次也可以,但是需要空间支持)。

    Code

    #include<bits/stdc++.h>
    #define xx first
    #define yy second
    #define ll long long
    using namespace std;
    
    const int N = 3000000 + 5;
    ll info[N], n, q[N], tail, head;
    ll l[N], r[N], k;
    
    int main () {
    	memset (r, 127, sizeof (r));
    	scanf ("%lld%lld", &k, &n);
    	for (int i = 1; i <= n; ++i) {
    		scanf ("%lld", &info[i]);
    	}
    	
    	l[1] = 1;
    	tail = head = 1;
    	q[1] = 1;
    	for (int i = 2; i <= n; ++i) {
    		l[i] = l[i - 1];
    		while (tail >= head && info[q[head]] - info[i] > k) {
    			l[i] = max (q[head] + 1, l[i]);
    			head++;
    		}
    		while (tail >= head && info[q[tail]] < info[i]) {
    			tail--;
    		}
    		q[++tail] = i;
    	}
    	
    	tail = head = 1;
    	q[1] = 1;
    	for (int i = 2; i <= n; ++i) {
    		l[i] = max (l[i], l[i - 1]);
    		while (tail >= head && info[q[head]] - info[i] < -k) {
    			l[i] = max (l[i], q[head] + 1);
    			head++;
    		}
    		while (tail >= head && info[q[tail]] >= info[i]) {
    			tail--;
    		}
    		q[++tail] = i;
    	}
    	
    	tail = head = 1;
    	q[1] = n;
    	r[n] = n;
    	for (int i = n - 1; i >= 1; --i) {
    		r[i] = r[i + 1];
    		while (tail >= head && info[q[head]] - info[i] > k) {
    			r[i] = min (q[head] - 1, r[i]);
    			head++;
    		}
    		while (tail >= head && info[q[tail]] <= info[i]) {
    			tail--;
    		}
    		q[++tail] = i;
    	}
    	
    	tail = head = 1;
    	q[1] = n;
    	for (int i = n - 1; i >= 1; --i) {
    		r[i] = min (r[i], r[i + 1]);
    		while (tail >= head && info[q[head]] - info[i] < -k) {
    			r[i] = min (r[i], q[head] - 1);
    			head++;
    		}
    		while (tail >= head && info[q[tail]] >= info[i]) {
    			tail--;
    		}
    		q[++tail] = i;
    	}
    	ll ans = 1, L = 1;
    	for (int i = 2; i <= n; ++i) {
    		L = max (L, l[i]);
    		ans = max (ans, i - L + 1);
    	}
    	printf ("%lld
    ", ans);
    	return 0;
    }
    

    Conclusion

    第一次敲出代码样例都没有过就提交了,直接10分(竟然还有10分)。

    发现有一个地方,在算出了限制位置(就是对于每一个点在区间内时,所选取的区间的最远的端点)之后,不能够直接

    for (int i = 1; i <= n; ++i) {
        ans = max (ans, r[i] - l[i] + 1);
    }
    

    因为区间内的数是非常有可能排斥的,正确的做法是

    for (int i = 1; i <= n; ++i) {
    	L = max (L, l[i]);
    	ans = max (ans, i - L + 1);
    }
    

    就是枚举每一个点作为右端点,(DP)出左端点的最远取值。

  • 相关阅读:
    redis从入门到放弃 -> 数据持久化
    yum怎么用?
    centos7.2系统没有eth0网卡
    redis从入门到放弃 -> 部署方案
    redis从入门到放弃 -> 简介&概念
    mysql用户权限设置
    mysql安装注意
    解决windows下的mysql匿名登陆无法使用mysql数据库的问题
    参数化测试--sheet表的应用
    整理QTP知识之1
  • 原文地址:https://www.cnblogs.com/ChiTongZ/p/11181474.html
Copyright © 2011-2022 走看看