RNN网络顾名思义,序列模型,因此假设input -> hidden -> output结构下,hidden layer的权重不仅从 input中得来,并且会从上一个时刻的hidden layer的权重得来,具体如图
RNN梯度消失与梯度爆炸的原因:
https://zhuanlan.zhihu.com/p/28687529
LSTM与RNN的区别:
LSTM的第一步是决定我们要从细胞状态中丢弃什么信息。 该决定由被称为“忘记门”的Sigmoid层实现。它查看ht-1(前一个输出)和xt(当前输入),并为单元格状态Ct-1(上一个状态)中的每个数字输出0和1之间的数字。1代表完全保留,而0代表彻底删除。
让我们回到语言模型的例子,试图根据以前的语料来预测下一个单词。 在这样的问题中,细胞状态可能包括当前主题的性别,从而决定使用正确的代词。 当我们看到一个新主题时,我们想要忘记旧主题的性别。
下一步是决定我们要在细胞状态中存储什么信息。 这部分分为两步。 首先,称为“输入门层”的Sigmoid层决定了我们将更新哪些值。 接下来一个tanh层创建候选向量Ct,该向量将会被加到细胞的状态中。 在下一步中,我们将结合这两个向量来创建更新值。
在我们的语言模型的例子中,我们希望将新主题的性别添加到单元格状态,以替换我们忘记的旧对象。
现在是时候去更新上一个状态值Ct−1了,将其更新为Ct。签名的步骤以及决定了应该做什么,我们只需实际执行即可。
我们将上一个状态值乘以ft,以此表达期待忘记的部分。之后我们将得到的值加上 it∗C̃ t。这个得到的是新的候选值, 按照我们决定更新每个状态值的多少来衡量.
在语言模型的例子中,对应着实际删除关于旧主题性别的信息,并添加新信息,正如在之前的步骤中描述的那样。
最后,我们需要决定我们要输出什么。 此输出将基于我们的细胞状态,但将是一个过滤版本。 首先,我们运行一个sigmoid层,它决定了我们要输出的细胞状态的哪些部分。 然后,我们将单元格状态通过tanh(将值规范化到-1和1之间),并将其乘以Sigmoid门的输出,至此我们只输出了我们决定的那些部分。
对于语言模型的例子,由于只看到一个主题,考虑到后面可能出现的词,它可能需要输出与动词相关的信息。 例如,它可能会输出主题是单数还是复数,以便我们知道动词应该如何组合在一起。
转载自 https://www.jianshu.com/p/4b4701beba92