zoukankan      html  css  js  c++  java
  • 一、flink架构模型

    面向数据时代的实时计算技术接踵而至。从我们最初认识的 Storm,再到 Spark 的异军突起,迅速占领了整个实时计算领域。Apache Flink 同时支持流式及批量分析应用,实现批流一体。

    Flink 在实时数仓和实时 ETL 中有天然的优势:

    • 状态管理,实时数仓里面会进行很多的聚合计算,这些都需要对于状态进行访问和管理,Flink 支持强大的状态管理;
    • 丰富的 API,Flink 提供极为丰富的多层次 API,包括 Stream API、Table API 及 Flink SQL;
    • 生态完善,实时数仓的用途广泛,Flink 支持多种存储(HDFS、ES 等);   
    • 批流一体,Flink 已经在将流计算和批计算的 API 进行统一。

    Flink 的主要特性包括:批流一体、Exactly-Once、强大的状态管理等。同时,Flink 还支持运行在包括 YARN、 Mesos、Kubernetes 在内的多种资源管理框架上。Flink 已经可以扩展到数千核心,其状态可以达到 TB 级别,且仍能保持高吞吐、低延迟的特性。Flink 已经成为在实时计算的领域的第一选择。

    Flink 核心概念

    • Streams(流),流分为有界流和无界流。有界流指的是有固定大小,不随时间增加而增长的数据,比如我们保存在 Hive 中的一个表;而无界流指的是数据随着时间增加而增长,计算状态持续进行,比如我们消费 Kafka 中的消息,消息持续不断,那么计算也会持续进行不会结束。
    • State(状态),所谓的状态指的是在进行流式计算过程中的信息。一般用作容错恢复和持久化,流式计算在本质上是增量计算,也就是说需要不断地查询过去的状态。状态在 Flink 中有十分重要的作用,例如为了确保 Exactly-once 语义需要将数据写到状态中;此外,状态的持久化存储也是集群出现 Fail-over 的情况下自动重启的前提条件。
    • Time(时间),Flink 支持了 Event time、Ingestion time、Processing time 等多种时间语义,时间是我们在进行 Flink 程序开发时判断业务状态是否滞后和延迟的重要依据。
    • API:Flink 自身提供了不同级别的抽象来支持我们开发流式或者批量处理程序,由上而下可分为 SQL / Table API、DataStream API、ProcessFunction 三层,开发者可以根据需要选择不同层级的 API 进行开发。

    Flink 的架构模型

    Flink 的数据流模型

    Flink 程序的基础构建模块是流(Streams)与转换(Transformations),每一个数据流起始于一个或多个 Source,并终止于一个或多个 Sink。数据流类似于有向无环图(DAG)。

    在上图中,程序消费 Kafka 数据,这便是我们的 Source 部分。
    然后经过 Map、Keyby、TimeWindow 等方法进行逻辑计算,该部分Transformation 转换部分,而其中的 Map、Keyby、TimeWindow 等方法被称为算子。通常,程序中的转换与数据流中的算子之间存在对应关系,有时一个转换可能包含多个转换算子。
    最后,经过计算的数据会被写入到执行的文件中,这便是 Sink 部分。
    实际上面对复杂的生产环境,Flink 任务大都是并行进行和分布在各个计算节点上。在 Flink 任务执行期间,每一个数据流都会有多个分区,并且每个算子都有多个算子任务并行进行。算子子任务的数量是该特定算子的并行度(Parallelism),对并行度的设置是 Flink 任务进行调优的重要手段。

    Flink 集群模型和角色
    在实际生产中,Flink 都是以集群在运行,在运行的过程中包含了两类进程。

    • JobManager:它扮演的是集群管理者的角色,负责调度任务、协调 checkpoints、协调故障恢复、收集 Job 的状态信息,并管理 Flink 集群中的从节点 TaskManager。
    • TaskManager:实际负责执行计算的 Worker,在其上执行 Flink Job 的一组 Task;TaskManager 还是所在节点的管理员,它负责把该节点上的服务器信息比如内存、磁盘、任务运行情况等向 JobManager 汇报。
    • Client:用户在提交编写好的 Flink 工程时,会先创建一个客户端再进行提交,这个客户端就是 Client,Client 会根据用户传入的参数选择使用 yarn per job 模式、stand-alone 模式还是 yarn-session 模式将 Flink 程序提交到集群。

    Flink 中的窗口和时间

    窗口和时间是 Flink 中的核心概念之一。在实际成产环境中,对数据流上的聚合需要由窗口来划定范围,比如“计算过去的 5 分钟”或者“最后 100 个元素的和”。
    Flink 支持了多种窗口模型比如滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)及会话窗口(Session Window)等。


    同时,Flink 支持了事件时间(Event Time)、摄取时间(Ingestion Time)和处理时间(Processing Time)三种时间语义用来满足实际生产中对于时间的特殊需求。


    Flink 的优势及与其他框架的区别

    架构
    Stom 的架构是经典的主从模式,并且强依赖 ZooKeeper;Spark Streaming 的架构是基于 Spark 的,它的本质是微批处理,每个 batch 都依赖 Driver,可以把 Spark Streaming 理解为时间维度上的 Spark DAG。
    Flink 也采用了经典的主从模式,DataFlow Graph 与 Storm 形成的拓扑 Topology 结构类似,Flink 程序启动后,会根据用户的代码处理成 Stream Graph,然后优化成为 JobGraph,JobManager 会根据 JobGraph 生成 ExecutionGraph。ExecutionGraph 才是 Flink 真正能执行的数据结构,当很多个 ExecutionGraph 分布在集群中,就会形成一张网状的拓扑结构。


    容错
    Storm 在容错方面只支持了 Record 级别的 ACK-FAIL,发送出去的每一条消息,都可以确定是被成功处理或失败处理,因此 Storm 支持至少处理一次语义。
    针对以前的 Spark Streaming 任务,可以配置对应的 checkpoint,也就是保存点。当任务出现 failover 的时候,会从 checkpoint 重新加载,使得数据不丢失。但是这个过程会导致原来的数据重复处理,不能做到“只处理一次”语义。Flink 基于两阶段提交实现了精确的一次处理语义。


    反压(BackPressure)
    反压是分布式处理系统中经常遇到的问题,当消费者速度低于生产者的速度时,则需要消费者将信息反馈给生产者使得生产者的速度能和消费者的速度进行匹配。
    Stom 在处理背压问题上简单粗暴,当下游消费者速度跟不上生产者的速度时会直接通知生产者,生产者停止生产数据,这种方式的缺点是不能实现逐级反压,且调优困难。设置的消费速率过小会导致集群吞吐量低下,速率过大会导致消费者 OOM。
    Spark Streaming 为了实现反压这个功能,在原来的架构基础上构造了一个“速率控制器”,这个“速率控制器”会根据几个属性,如任务的结束时间、处理时长、处理消息的条数等计算一个速率。在实现控制数据的接收速率中用到了一个经典的算法,即“PID 算法”。
    Flink 没有使用任何复杂的机制来解决反压问题,Flink 在数据传输过程中使用了分布式阻塞队列。在一个阻塞队列中,当队列满了以后发送者会被天然阻塞住,这种阻塞功能相当于给这个阻塞队列提供了反压的能力。

    天才是百分之一的灵感,加百分之九十九的汗水,但那百分之一的灵感往往比百分之九十九的汗水来的重要
  • 相关阅读:
    java_oop_方法2
    POJ 3276 Face The Right Way(反转)
    POJ 3276 Face The Right Way(反转)
    POJ 2566 Bound Found(尺取法,前缀和)
    POJ 2566 Bound Found(尺取法,前缀和)
    POJ 3320 Jessica's Reading Problem(尺取法)
    POJ 3320 Jessica's Reading Problem(尺取法)
    POJ 3061 Subsequence(尺取法)
    POJ 3061 Subsequence(尺取法)
    HDU 1222 Wolf and Rabbit(欧几里得)
  • 原文地址:https://www.cnblogs.com/Christbao/p/13629802.html
Copyright © 2011-2022 走看看