zoukankan      html  css  js  c++  java
  • sklearn的train_test_split函数

    train_test_split函数用于将矩阵随机划分为训练子集和测试子集,并返回划分好的训练集测试集样本和训练集测试集标签。

    from sklearn.model_selection import train_test_split 
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2, random_state=0)
    #或者
    X_train, X_test, y_train, y_test = train_test_split(feature,label,stratify=label, random_state=50)
    

    参数详解:

    X/ feature:  特征/自变量

    y / label:  标签/因变量

    train_size: 训练集数所占比例

    test_size: 测试集数所占比例

    random_state: 随机种子,默认值为0。

    随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。比如你每次都填1其他参数一样的情况下你得到的随机数组是一样的。但填0或不填,每次都会不一样。随机数的产生取决于种子,随机数和种子之间的关系遵从以下两个规则:种子不同,产生不同的随机数;种子相同,即使实例不同也产生相同的随机数。

    stratify =label  : 依据标签y,按原数据y中各类比例,分配给train和test,使得train和test中各类数据的比例与原数据集一样。 

  • 相关阅读:
    TCP的三次握手与四次挥手理解及面试题(很全面)
    python解释器锁的理解
    Flask的基本使用、四剑客和配置文件
    Django cache缓存
    xadmin后台管理
    cookies与session
    Java stream流
    Java IO流
    springboot配置文件加载顺序与一些常用配置
    OAuth2.0开放授权
  • 原文地址:https://www.cnblogs.com/Christina-Notebook/p/10278495.html
Copyright © 2011-2022 走看看