zoukankan      html  css  js  c++  java
  • UVALIVE 2431 Binary Stirling Numbers

    转自别人的博客。这里记录一下

    这题是定义如下的一个数:

    S(0, 0) = 1; S(n, 0) = 0 for n > 0;S(0, m) = 0 for m > 0;

    S(n, m) = m S(n - 1, m) + S(n - 1, m - 1), for n, m > 0.

    也就是题中所说的把一个含有n个元素的集合分成m份,共有多少种分法。

    现在题目就是要求S(n, m)的奇偶性。

    如果m是一个偶数的话,那么我们可以推出 S(n, m) Ξ S(n-1, m-1) (mod 2),如果m是一个奇数的话,我们推出S(n, m) Ξ (S(n-1, m) + S(n-1, m-1)) (mod 2)。后面看到某一大牛所说的利用画图来推导这个表达式,整了一下,S(n, m)这个状态可由左边的S(n-1, m) 以及 斜下方的 S(n-2, m-2)得到。最后得到结果是c( n-m, n-m+(m-1)/2 ).

    最后只要确定一个组合数是否为奇数即可,c(A, B) = B! / (A! * (B-A)!) 我们通过提取上下阶乘的2的个数即可,因为这个式子一定能够约分成整数,那么只要2这个因子没有就一定是一个奇数了。

    代码:

    #include <cstdlib>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    using namespace std;
    
    int main()
    {
        int T, n, m, t1, t2;
        scanf("%d", &T);
        while (T--) {
            t1 = t2 = 0;
            scanf("%d %d", &n, &m);
            if (m == 0 && n) {
                puts("0");
                continue;    
            }
            n -= m;
            m = n + (m-1)/2; // n此处就是n-m了
            int A = n, B = m, C = (B-A);
            while (B) {
                t1 += B/2;
                B /= 2;
            }
            while (A) {
                t2 += A/2;
                A /= 2;    
            }
            while (C) {
                t2 += C/2;
                C /= 2;    
            }
            if (t1 == t2) {
                puts("1");    
            }
            else {
                puts("0");
            }
        }
        return 0;
    }
    View Code
  • 相关阅读:
    java图片加文字
    [转]NetBeans优化技巧 提升启动速度
    重建win7桌面图标缓存
    负载测试(Load Test)
    乐观锁与悲观琐的区别
    事物锁表问题
    建立silverlight安装环境
    持续集成ccnet
    C# AppDomain
    Windows Services
  • 原文地址:https://www.cnblogs.com/Commence/p/4004391.html
Copyright © 2011-2022 走看看