zoukankan      html  css  js  c++  java
  • Linux内核device结构体分析

    1、前言

    Linux内核中的设备驱动模型,是建立在sysfs设备文件系统和kobject上的,由总线(bus)、设备(device)、驱动(driver)和类(class)所组成的关系结构,在底层,Linux系统中的每个设备都有一个device结构体的实例,本文将对Linux内核的device结构体以及相关结构进行简要分析。

    2、device结构体

    在Linux内核源码中,struct device结构体的定义在include/linux/device.h中,实现的主要方法在drivers/base/core.c文件中,device结构体的定义如下所示:

    struct device {
        struct device        *parent;
    
        struct device_private    *p;
    
        struct kobject kobj;
        const char        *init_name; /* initial name of the device */
        const struct device_type *type;
    
        struct mutex        mutex;    /* mutex to synchronize calls to
                         * its driver.
                         */
    
        struct bus_type    *bus;        /* type of bus device is on */
        struct device_driver *driver;    /* which driver has allocated this
                           device */
        void        *platform_data;    /* Platform specific data, device
                           core doesn't touch it */
        void        *driver_data;    /* Driver data, set and get with
                           dev_set/get_drvdata */
        struct dev_links_info    links;
        struct dev_pm_info    power;
        struct dev_pm_domain    *pm_domain;
    
    #ifdef CONFIG_GENERIC_MSI_IRQ_DOMAIN
        struct irq_domain    *msi_domain;
    #endif
    #ifdef CONFIG_PINCTRL
        struct dev_pin_info    *pins;
    #endif
    #ifdef CONFIG_GENERIC_MSI_IRQ
        struct list_head    msi_list;
    #endif
    
    #ifdef CONFIG_NUMA
        int        numa_node;    /* NUMA node this device is close to */
    #endif
        const struct dma_map_ops *dma_ops;
        u64        *dma_mask;    /* dma mask (if dma'able device) */
        u64        coherent_dma_mask;/* Like dma_mask, but for
                             alloc_coherent mappings as
                             not all hardware supports
                             64 bit addresses for consistent
                             allocations such descriptors. */
        unsigned long    dma_pfn_offset;
    
        struct device_dma_parameters *dma_parms;
    
        struct list_head    dma_pools;    /* dma pools (if dma'ble) */
    
        struct dma_coherent_mem    *dma_mem; /* internal for coherent mem
                             override */
    #ifdef CONFIG_DMA_CMA
        struct cma *cma_area;        /* contiguous memory area for dma
                           allocations */
    #endif
        /* arch specific additions */
        struct dev_archdata    archdata;
    
        struct device_node    *of_node; /* associated device tree node */
        struct fwnode_handle    *fwnode; /* firmware device node */
    
        dev_t            devt;    /* dev_t, creates the sysfs "dev" */
        u32            id;    /* device instance */
    
        spinlock_t        devres_lock;
        struct list_head    devres_head;
    
        struct klist_node    knode_class;
        struct class        *class;
        const struct attribute_group **groups;    /* optional groups */
    
        void    (*release)(struct device *dev);
        struct iommu_group    *iommu_group;
        struct iommu_fwspec    *iommu_fwspec;
    
        bool            offline_disabled:1;
        bool            offline:1;
        bool            of_node_reused:1;
    };

    部分结构体成员解释:

    parent:指向设备的“父”设备,它所连接的设备,在大多数情况下,父设备是某种总线或主机控制器,如果该成员为NULL,则该设备为顶级设备;

    p:用于保存设备驱动核心部分的私有数据;

    kobj:嵌入的struct kobject对象实例;

    init_name:设备的初始名称

    type:设备的类型,用于标识设备类型并携带特定类型信息;

    mutex:用于同步的互斥锁;

    bus:该设备所处于的总线;

    driver:该设备所分配的驱动程序;

    platform_data:设备中特定的平台数据;

    driver_data:指向驱动程序特定的私有数据;

    of_node:与设备数相联系的结构体指针;

    devt:用于表示设备的设备号;

    devres_lock:保护设备资源的自旋锁;

    devres_head:设备资源的双向链表头;

    knode_class:接入class链表时所需要的klist节点;

    class:指向设备所属class的指针;

    groups:该设备的属性集合;

    release:函数指针,当设备需要释放时调用此函数。

    device结构体中有一部分成员不愿意被外界看到,所以抽象出了struct device_private这个结构体,该结构体包括了设备驱动模型内部的链接,结构体定义如下:

    struct device_private {
        struct klist klist_children;
        struct klist_node knode_parent;
        struct klist_node knode_driver;
        struct klist_node knode_bus;
        struct list_head deferred_probe;
        struct device *device;
    };

    部分结构体成员解释:

    klist_children:子设备的klist链表;

    knode_parent:接入父设备的klist_children时所需要的klist节点;

    knode_driver:接入驱动的设备链表时所需要的klist节点;

    knode_bus:接入总线的设备链表时所需要的klist节点;

    device:回指struct device结构体的指针。

    device结构体中包含了一个struct device_type结构体的指针,用于描述设备的类型,该结构体定义如下:

    struct device_type {
        const char *name;
        const struct attribute_group **groups;
        int (*uevent)(struct device *dev, struct kobj_uevent_env *env);
        char *(*devnode)(struct device *dev, umode_t *mode,
                 kuid_t *uid, kgid_t *gid);
        void (*release)(struct device *dev);
    
        const struct dev_pm_ops *pm;
    };

    该结构体功能类似于kobj_type。

    还有一个设备属性结构体,名称为struct device_attribute,是对struct attribute的进一步封装,并提供了设备属性的读写函数指针,结构体定义如下:

    /* interface for exporting device attributes */
    struct device_attribute {
        struct attribute    attr;
        ssize_t (*show)(struct device *dev, struct device_attribute *attr,
                char *buf);
        ssize_t (*store)(struct device *dev, struct device_attribute *attr,
                 const char *buf, size_t count);
    };

    其它的一些struct device结构体成员,例如archdata、dma和devres等,是一些设备特有的东西,暂时不讨论,本文主要关心设备驱动模型的基本建立。

    3、device的实现

    接下来对device的实现进行简单分析,实现的方法主要在文件core.c中:

    int __init devices_init(void)
    {
        devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);///sys/devices目录
        if (!devices_kset)
            return -ENOMEM;
        dev_kobj = kobject_create_and_add("dev", NULL);///sys/dev目录
        if (!dev_kobj)
            goto dev_kobj_err;
        sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);///sys/dev/block目录
        if (!sysfs_dev_block_kobj)
            goto block_kobj_err;
        sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);///sys/dev/char目录
        if (!sysfs_dev_char_kobj)
            goto char_kobj_err;
    
        return 0;
    
     char_kobj_err:
        kobject_put(sysfs_dev_block_kobj);
     block_kobj_err:
        kobject_put(dev_kobj);
     dev_kobj_err:
        kset_unregister(devices_kset);
        return -ENOMEM;
    }

    devices_init()函数是在设备驱动模型初始化时调用的部分初始函数,它实现的功能是建立sysfs中的devices目录和dev目录,然后在dev目录下建立block和char两个子目录,block和char目录用来存放设备号文件。

    #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
    
    static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
                     char *buf)
    {
        struct device_attribute *dev_attr = to_dev_attr(attr);
        struct device *dev = kobj_to_dev(kobj);
        ssize_t ret = -EIO;
    
        if (dev_attr->show)
            ret = dev_attr->show(dev, dev_attr, buf);
        if (ret >= (ssize_t)PAGE_SIZE) {
            print_symbol("dev_attr_show: %s returned bad count
    ",
                    (unsigned long)dev_attr->show);
        }
        return ret;
    }
    
    static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
                      const char *buf, size_t count)
    {
        struct device_attribute *dev_attr = to_dev_attr(attr);
        struct device *dev = kobj_to_dev(kobj);
        ssize_t ret = -EIO;
    
        if (dev_attr->store)
            ret = dev_attr->store(dev, dev_attr, buf, count);
        return ret;
    }
    
    static const struct sysfs_ops dev_sysfs_ops = {
        .show    = dev_attr_show,
        .store    = dev_attr_store,
    };

    to_dev_attr()宏定义用来获取struct device_attribute结构体的首地址,dev_sysfs_ops结构体的内容就是device注册到sysfs设备文件系统的操作函数,dev_attr_show()和dev_attr_store()函数会调用struct device_attribute结构体内的读写属性相关函数。

    static void device_release(struct kobject *kobj)
    {
        struct device *dev = kobj_to_dev(kobj);
        struct device_private *p = dev->p;
    
        /*
         * Some platform devices are driven without driver attached
         * and managed resources may have been acquired.  Make sure
         * all resources are released.
         *
         * Drivers still can add resources into device after device
         * is deleted but alive, so release devres here to avoid
         * possible memory leak.
         */
        devres_release_all(dev);
    
        if (dev->release)
            dev->release(dev);
        else if (dev->type && dev->type->release)
            dev->type->release(dev);
        else if (dev->class && dev->class->dev_release)
            dev->class->dev_release(dev);
        else
            WARN(1, KERN_ERR "Device '%s' does not have a release() "
                "function, it is broken and must be fixed.
    ",
                dev_name(dev));
        kfree(p);
    }
    
    static const void *device_namespace(struct kobject *kobj)
    {
        struct device *dev = kobj_to_dev(kobj);
        const void *ns = NULL;
    
        if (dev->class && dev->class->ns_type)
            ns = dev->class->namespace(dev);
    
        return ns;
    }
    
    static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
    {
        struct device *dev = kobj_to_dev(kobj);
    
        if (dev->class && dev->class->get_ownership)
            dev->class->get_ownership(dev, uid, gid);
    }
    
    static struct kobj_type device_ktype = {
        .release    = device_release,
        .sysfs_ops    = &dev_sysfs_ops,
        .namespace    = device_namespace,
        .get_ownership    = device_get_ownership,
    };

    当struct device结构体内的实例kobject引用计数到0时会调用device_release()函数来释放掉device,函数调用时,会先通过kobj指针获取device的首地址,然后判断device下的release()是否存在,如果存在则调用,否则,依次判断device下device_type下的release()和device下class下的dev_release()函数是否存在,存在则调用,最后将device_private结构体指针指向的内存释放掉。

    static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
    {
        struct kobj_type *ktype = get_ktype(kobj);
    
        if (ktype == &device_ktype) {
            struct device *dev = kobj_to_dev(kobj);
            if (dev->bus)
                return 1;
            if (dev->class)
                return 1;
        }
        return 0;
    }
    
    static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
    {
        struct device *dev = kobj_to_dev(kobj);
    
        if (dev->bus)
            return dev->bus->name;
        if (dev->class)
            return dev->class->name;
        return NULL;
    }
    
    static int dev_uevent(struct kset *kset, struct kobject *kobj,
                  struct kobj_uevent_env *env)
    {
        struct device *dev = kobj_to_dev(kobj);
        int retval = 0;
    
        /* add device node properties if present */
        if (MAJOR(dev->devt)) {
            const char *tmp;
            const char *name;
            umode_t mode = 0;
            kuid_t uid = GLOBAL_ROOT_UID;
            kgid_t gid = GLOBAL_ROOT_GID;
    
            add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
            add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
            name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
            if (name) {
                add_uevent_var(env, "DEVNAME=%s", name);
                if (mode)
                    add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
                if (!uid_eq(uid, GLOBAL_ROOT_UID))
                    add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
                if (!gid_eq(gid, GLOBAL_ROOT_GID))
                    add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
                kfree(tmp);
            }
        }
    
        if (dev->type && dev->type->name)
            add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
    
        if (dev->driver)
            add_uevent_var(env, "DRIVER=%s", dev->driver->name);
    
        /* Add common DT information about the device */
        of_device_uevent(dev, env);
    
        /* have the bus specific function add its stuff */
        if (dev->bus && dev->bus->uevent) {
            retval = dev->bus->uevent(dev, env);
            if (retval)
                pr_debug("device: '%s': %s: bus uevent() returned %d
    ",
                     dev_name(dev), __func__, retval);
        }
    
        /* have the class specific function add its stuff */
        if (dev->class && dev->class->dev_uevent) {
            retval = dev->class->dev_uevent(dev, env);
            if (retval)
                pr_debug("device: '%s': %s: class uevent() "
                     "returned %d
    ", dev_name(dev),
                     __func__, retval);
        }
    
        /* have the device type specific function add its stuff */
        if (dev->type && dev->type->uevent) {
            retval = dev->type->uevent(dev, env);
            if (retval)
                pr_debug("device: '%s': %s: dev_type uevent() "
                     "returned %d
    ", dev_name(dev),
                     __func__, retval);
        }
    
        return retval;
    }
    
    static const struct kset_uevent_ops device_uevent_ops = {
        .filter =    dev_uevent_filter,
        .name =        dev_uevent_name,
        .uevent =    dev_uevent,
    };

    kset_uevent_ops结构体内的函数是用于管理kset内部的kobject的uevent操作的,其中,filter()函数用于阻止一个kobject向用户空间发送uevent,当函数的返回值为0时表示阻止,在上面的dev_uevent_filter()函数中检查了device所属的bus或者class是否存在,如果都不存在,则返回0,也就是没有发送uevent的必要了,name()函数用于覆盖kset发送给用户空间的名称,在上面的dev_uevent_name()函数选择使用device所属的bus或者class的名称,uevent()函数是在uevent将被发送到用户空间之前进行调用的,用于向uevent中增加新的环境变量。

    static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
                   char *buf)
    {
        struct kobject *top_kobj;
        struct kset *kset;
        struct kobj_uevent_env *env = NULL;
        int i;
        size_t count = 0;
        int retval;
    
        /* search the kset, the device belongs to */
        top_kobj = &dev->kobj;
        while (!top_kobj->kset && top_kobj->parent)
            top_kobj = top_kobj->parent;
        if (!top_kobj->kset)
            goto out;
    
        kset = top_kobj->kset;
        if (!kset->uevent_ops || !kset->uevent_ops->uevent)
            goto out;
    
        /* respect filter */
        if (kset->uevent_ops && kset->uevent_ops->filter)
            if (!kset->uevent_ops->filter(kset, &dev->kobj))
                goto out;
    
        env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
        if (!env)
            return -ENOMEM;
    
        /* let the kset specific function add its keys */
        retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
        if (retval)
            goto out;
    
        /* copy keys to file */
        for (i = 0; i < env->envp_idx; i++)
            count += sprintf(&buf[count], "%s
    ", env->envp[i]);
    out:
        kfree(env);
        return count;
    }
    
    static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
                    const char *buf, size_t count)
    {
        if (kobject_synth_uevent(&dev->kobj, buf, count))
            dev_err(dev, "uevent: failed to send synthetic uevent
    ");
    
        return count;
    }
    static DEVICE_ATTR_RW(uevent);

    device不仅在kset中添加了对uevent的管理,还把uevent信息封装成设备的一个属性文件uevent,其权限为拥有者可读写,其中uevent_show()函数用于在用户空间显示uevent中的环境变量,uevent_store()函数则用于将uevent属性写入到内核空间。

    static int device_add_attrs(struct device *dev)
    {
        struct class *class = dev->class;
        const struct device_type *type = dev->type;
        int error;
    
        if (class) {
            error = device_add_groups(dev, class->dev_groups);
            if (error)
                return error;
        }
    
        if (type) {
            error = device_add_groups(dev, type->groups);
            if (error)
                goto err_remove_class_groups;
        }
    
        error = device_add_groups(dev, dev->groups);
        if (error)
            goto err_remove_type_groups;
    
        if (device_supports_offline(dev) && !dev->offline_disabled) {
            error = device_create_file(dev, &dev_attr_online);
            if (error)
                goto err_remove_dev_groups;
        }
    
        return 0;
    
     err_remove_dev_groups:
        device_remove_groups(dev, dev->groups);
     err_remove_type_groups:
        if (type)
            device_remove_groups(dev, type->groups);
     err_remove_class_groups:
        if (class)
            device_remove_groups(dev, class->dev_groups);
    
        return error;
    }
    
    static void device_remove_attrs(struct device *dev)
    {
        struct class *class = dev->class;
        const struct device_type *type = dev->type;
    
        device_remove_file(dev, &dev_attr_online);
        device_remove_groups(dev, dev->groups);
    
        if (type)
            device_remove_groups(dev, type->groups);
    
        if (class)
            device_remove_groups(dev, class->dev_groups);
    }

    device_add_attrs()负责device中的属性添加,包括几个部分的集合,分别是class中groups、device_type中的groups还有device本身的groups,device_remove_attrs()则是相反的操作,负责删除device的属性。

    static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
                char *buf)
    {
        return print_dev_t(buf, dev->devt);
    }
    static DEVICE_ATTR_RO(dev);

    这里定义了一个名为dev的属性文件,其权限为拥有者只能读,函数实现的功能为显示设备的设备号。

    /**
     * device_create_file - create sysfs attribute file for device.
     * @dev: device.
     * @attr: device attribute descriptor.
     */
    int device_create_file(struct device *dev,
                   const struct device_attribute *attr)
    {
        int error = 0;
    
        if (dev) {
            WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
                "Attribute %s: write permission without 'store'
    ",
                attr->attr.name);
            WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
                "Attribute %s: read permission without 'show'
    ",
                attr->attr.name);
            error = sysfs_create_file(&dev->kobj, &attr->attr);
        }
    
        return error;
    }
    
    /**
     * device_remove_file - remove sysfs attribute file.
     * @dev: device.
     * @attr: device attribute descriptor.
     */
    void device_remove_file(struct device *dev,
                const struct device_attribute *attr)
    {
        if (dev)
            sysfs_remove_file(&dev->kobj, &attr->attr);
    }
    
    
    /**
     * device_create_bin_file - create sysfs binary attribute file for device.
     * @dev: device.
     * @attr: device binary attribute descriptor.
     */
    int device_create_bin_file(struct device *dev,
                   const struct bin_attribute *attr)
    {
        int error = -EINVAL;
        if (dev)
            error = sysfs_create_bin_file(&dev->kobj, attr);
        return error;
    }
    
    /**
     * device_remove_bin_file - remove sysfs binary attribute file
     * @dev: device.
     * @attr: device binary attribute descriptor.
     */
    void device_remove_bin_file(struct device *dev,
                    const struct bin_attribute *attr)
    {
        if (dev)
            sysfs_remove_bin_file(&dev->kobj, attr);
    }

    上面这些函数是对sysfs提供的API进行简单的封装,其中device_create_file()和device_remove_file()提供直接的设备属性文件管理方法,device_create_bin_file()和device_remove_bin_file()则是提供设备管理二进制文件的方法。

    static void klist_children_get(struct klist_node *n)
    {
        struct device_private *p = to_device_private_parent(n);
        struct device *dev = p->device;
    
        get_device(dev);
    }
    
    static void klist_children_put(struct klist_node *n)
    {
        struct device_private *p = to_device_private_parent(n);
        struct device *dev = p->device;
    
        put_device(dev);
    }

    klist_children_get()和klist_children_put()函数是当设备挂入和删除父设备的klist_children链表时调用的函数,相当于对设备的kobject引用计数的操作。

    /**
     * get_device - increment reference count for device.
     * @dev: device.
     *
     * This simply forwards the call to kobject_get(), though
     * we do take care to provide for the case that we get a NULL
     * pointer passed in.
     */
    struct device *get_device(struct device *dev)
    {
        return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
    }
    
    /**
     * put_device - decrement reference count.
     * @dev: device in question.
     */
    void put_device(struct device *dev)
    {
        /* might_sleep(); */
        if (dev)
            kobject_put(&dev->kobj);
    }

    get_device()函数和put_device()用于dev的引用计数,通过内嵌的kobject来实现,当引用计数为0时,将会调用前面分析到的device_release()函数。

    void device_initialize(struct device *dev)
    {
        dev->kobj.kset = devices_kset;
        kobject_init(&dev->kobj, &device_ktype);
        INIT_LIST_HEAD(&dev->dma_pools);
        mutex_init(&dev->mutex);
        lockdep_set_novalidate_class(&dev->mutex);
        spin_lock_init(&dev->devres_lock);
        INIT_LIST_HEAD(&dev->devres_head);
        device_pm_init(dev);
        set_dev_node(dev, -1);
    #ifdef CONFIG_GENERIC_MSI_IRQ
        INIT_LIST_HEAD(&dev->msi_list);
    #endif
        INIT_LIST_HEAD(&dev->links.consumers);
        INIT_LIST_HEAD(&dev->links.suppliers);
        dev->links.status = DL_DEV_NO_DRIVER;
    }

    device_initialize()函数是设备在sysfs中注册的第一个阶段,用于将struct device结构体进行初始化,主要是对结构体内的一些成员进行初始化,结构体内嵌的kobject下的kset配置为devices_kset,调用kobject_init()函数设置device_ktype和sysfs_ops结构中的两个函数和device_release()函数,另外还有一些特定资源需要的成员的初始化。

    static struct kobject *get_device_parent(struct device *dev,
                         struct device *parent)
    {
        if (dev->class) {
            struct kobject *kobj = NULL;
            struct kobject *parent_kobj;
            struct kobject *k;
    
    #ifdef CONFIG_BLOCK
            /* block disks show up in /sys/block */
            if (sysfs_deprecated && dev->class == &block_class) {
                if (parent && parent->class == &block_class)
                    return &parent->kobj;
                return &block_class.p->subsys.kobj;
            }
    #endif
    
            /*
             * If we have no parent, we live in "virtual".
             * Class-devices with a non class-device as parent, live
             * in a "glue" directory to prevent namespace collisions.
             */
            if (parent == NULL)
                parent_kobj = virtual_device_parent(dev);
            else if (parent->class && !dev->class->ns_type)
                return &parent->kobj;
            else
                parent_kobj = &parent->kobj;
    
            mutex_lock(&gdp_mutex);
    
            /* find our class-directory at the parent and reference it */
            spin_lock(&dev->class->p->glue_dirs.list_lock);
            list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
                if (k->parent == parent_kobj) {
                    kobj = kobject_get(k);
                    break;
                }
            spin_unlock(&dev->class->p->glue_dirs.list_lock);
            if (kobj) {
                mutex_unlock(&gdp_mutex);
                return kobj;
            }
    
            /* or create a new class-directory at the parent device */
            k = class_dir_create_and_add(dev->class, parent_kobj);
            /* do not emit an uevent for this simple "glue" directory */
            mutex_unlock(&gdp_mutex);
            return k;
        }
    
        /* subsystems can specify a default root directory for their devices */
        if (!parent && dev->bus && dev->bus->dev_root)
            return &dev->bus->dev_root->kobj;
    
        if (parent)
            return &parent->kobj;
        return NULL;
    }

    函数get_device_parent()用于获取父节点的kobject,get_device_parent()的返回值直接决定了device将被挂在哪个目录下,设备最终挂在的目录,是由多个因素综合决定的。

    static int device_add_class_symlinks(struct device *dev)
    {
        struct device_node *of_node = dev_of_node(dev);
        int error;
    
        if (of_node) {
            error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
            if (error)
                dev_warn(dev, "Error %d creating of_node link
    ",error);
            /* An error here doesn't warrant bringing down the device */
        }
    
        if (!dev->class)
            return 0;
    
        error = sysfs_create_link(&dev->kobj,
                      &dev->class->p->subsys.kobj,
                      "subsystem");
        if (error)
            goto out_devnode;
    
        if (dev->parent && device_is_not_partition(dev)) {
            error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
                          "device");
            if (error)
                goto out_subsys;
        }
    
    #ifdef CONFIG_BLOCK
        /* /sys/block has directories and does not need symlinks */
        if (sysfs_deprecated && dev->class == &block_class)
            return 0;
    #endif
    
        /* link in the class directory pointing to the device */
        error = sysfs_create_link(&dev->class->p->subsys.kobj,
                      &dev->kobj, dev_name(dev));
        if (error)
            goto out_device;
    
        return 0;
    
    out_device:
        sysfs_remove_link(&dev->kobj, "device");
    
    out_subsys:
        sysfs_remove_link(&dev->kobj, "subsystem");
    out_devnode:
        sysfs_remove_link(&dev->kobj, "of_node");
        return error;
    }

    device_add_class_symlinks()函数用于在device和class直接添加一些软链接,在device目录下创建指向class的subsystem文件,在class目录下创建指向device的同名文件,如果device有父设备,而且device不是块设备分区时,则在device目录下创建一个指向父设备的device链接文件。

    static void device_remove_class_symlinks(struct device *dev)
    {
        if (dev_of_node(dev))
            sysfs_remove_link(&dev->kobj, "of_node");
    
        if (!dev->class)
            return;
    
        if (dev->parent && device_is_not_partition(dev))
            sysfs_remove_link(&dev->kobj, "device");
        sysfs_remove_link(&dev->kobj, "subsystem");
    #ifdef CONFIG_BLOCK
        if (sysfs_deprecated && dev->class == &block_class)
            return;
    #endif
        sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
    }

    device_remove_class_symlinks()函数则是相反操作,用于删除device和class之间建立的软链接。

    /**
     * dev_set_name - set a device name
     * @dev: device
     * @fmt: format string for the device's name
     */
    int dev_set_name(struct device *dev, const char *fmt, ...)
    {
        va_list vargs;
        int err;
    
        va_start(vargs, fmt);
        err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
        va_end(vargs);
        return err;
    }

    dev_set_name()函数用于设置device的名称,该函数只能在设备未注册之前使用,名称是通过dev->kobject进行管理的。

    static struct kobject *device_to_dev_kobj(struct device *dev)
    {
        struct kobject *kobj;
    
        if (dev->class)
            kobj = dev->class->dev_kobj;
        else
            kobj = sysfs_dev_char_kobj;
    
        return kobj;
    }

    该函数用于为device选择合适的/sys/dev下的kobject或者字符设备或者NULL。

    #define format_dev_t(buffer, dev)                    
        ({                                
            sprintf(buffer, "%u:%u", MAJOR(dev), MINOR(dev));    
            buffer;                            
        })
    
    static int device_create_sys_dev_entry(struct device *dev)
    {
        struct kobject *kobj = device_to_dev_kobj(dev);
        int error = 0;
        char devt_str[15];
    
        if (kobj) {
            format_dev_t(devt_str, dev->devt);
            error = sysfs_create_link(kobj, &dev->kobj, devt_str);
        }
    
        return error;
    }
    
    static void device_remove_sys_dev_entry(struct device *dev)
    {
        struct kobject *kobj = device_to_dev_kobj(dev);
        char devt_str[15];
    
        if (kobj) {
            format_dev_t(devt_str, dev->devt);
            sysfs_remove_link(kobj, devt_str);
        }
    }

    device_create_sys_dev_entry()函数实现的功能是在/sys/dev相应的目录下创建相应设备的软链接,首先通过调用device_to_dev_kobj()函数获得父节点的kobj,然后调用sysfs_create_link()函数建立软链接,device_remove_sys_dev_entry()函数则是执行相反的操作,用于删除已经在/sys/dev下建立的软链接。

    int device_private_init(struct device *dev)
    {
        dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
        if (!dev->p)
            return -ENOMEM;
        dev->p->device = dev;
        klist_init(&dev->p->klist_children, klist_children_get,
               klist_children_put);
        INIT_LIST_HEAD(&dev->p->deferred_probe);
        return 0;
    }

    函数device_private_init()为dev->p分配内存空间并进行初始化,该内存的空间释放是在调用device_release()函数释放设备时才会释放。

    上面提到到的函数都是比较零散的函数,看起来并没有什么联系,接下来继续分析一下提供给外界的接口函数实现:

    /**
     * device_register - register a device with the system.
     * @dev: pointer to the device structure
     *
     * This happens in two clean steps - initialize the device
     * and add it to the system. The two steps can be called
     * separately, but this is the easiest and most common.
     * I.e. you should only call the two helpers separately if
     * have a clearly defined need to use and refcount the device
     * before it is added to the hierarchy.
     *
     * For more information, see the kerneldoc for device_initialize()
     * and device_add().
     *
     * NOTE: _Never_ directly free @dev after calling this function, even
     * if it returned an error! Always use put_device() to give up the
     * reference initialized in this function instead.
     */
    int device_register(struct device *dev)
    {
        device_initialize(dev);
        return device_add(dev);
    }

    首先是device_register()函数,该函数是提供给外界注册设备的接口,该函数首先调用device_initialize()函数进行结构体的变量初始化,然后调用device_add()函数将device添加到系统中,但是需要注意的是,在调用device_register()注册device之前,有一些device结构体变量需要自己设置,其中有指明设备位置的struct device *parent、struct bus_type *bus、struct class *class等,有指明设备属性的const char *init_name、struct device_type *type、const struct attribute_group **groups、dev_t devt和release()函数等,不同的设备使用的方法不同。

    接下来分析device_add()函数的实现:

    /**
     * device_add - add device to device hierarchy.
     * @dev: device.
     *
     * This is part 2 of device_register(), though may be called
     * separately _iff_ device_initialize() has been called separately.
     *
     * This adds @dev to the kobject hierarchy via kobject_add(), adds it
     * to the global and sibling lists for the device, then
     * adds it to the other relevant subsystems of the driver model.
     *
     * Do not call this routine or device_register() more than once for
     * any device structure.  The driver model core is not designed to work
     * with devices that get unregistered and then spring back to life.
     * (Among other things, it's very hard to guarantee that all references
     * to the previous incarnation of @dev have been dropped.)  Allocate
     * and register a fresh new struct device instead.
     *
     * NOTE: _Never_ directly free @dev after calling this function, even
     * if it returned an error! Always use put_device() to give up your
     * reference instead.
     */
    int device_add(struct device *dev)
    {
        struct device *parent;
        struct kobject *kobj;
        struct class_interface *class_intf;
        int error = -EINVAL;
        struct kobject *glue_dir = NULL;
    
        dev = get_device(dev);    //增加device的引用计数
        if (!dev)
            goto done;
    
        if (!dev->p) {
            error = device_private_init(dev);    //分配和初始化dev->p
            if (error)
                goto done;
        }
    
        /*
         * for statically allocated devices, which should all be converted
         * some day, we need to initialize the name. We prevent reading back
         * the name, and force the use of dev_name()
         */
        if (dev->init_name) {
            dev_set_name(dev, "%s", dev->init_name);    //设置设备的名称
            dev->init_name = NULL;
        }
    
        /* subsystems can specify simple device enumeration */
        if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
            dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
    
        if (!dev_name(dev)) {
            error = -EINVAL;
            goto name_error;
        }
    
        pr_debug("device: '%s': %s
    ", dev_name(dev), __func__);
    
        parent = get_device(dev->parent);    //增加对parent的引用计数,无parent时返回NULL
        kobj = get_device_parent(dev, parent);    //获取父kobject
        if (IS_ERR(kobj)) {
            error = PTR_ERR(kobj);
            goto parent_error;
        }
        if (kobj)
            dev->kobj.parent = kobj;    //设置dev->kobj的父kobject
    
        /* use parent numa_node */
        if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
            set_dev_node(dev, dev_to_node(parent));
    
        /* first, register with generic layer. */
        /* we require the name to be set before, and pass NULL */
        error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);    //将device内嵌的kobj加入到kobject层次结构中
        if (error) {
            glue_dir = get_glue_dir(dev);
            goto Error;
        }
    
        /* notify platform of device entry */
        if (platform_notify)
            platform_notify(dev);
    
        error = device_create_file(dev, &dev_attr_uevent);    //添加uevent属性文件
        if (error)
            goto attrError;
    
        error = device_add_class_symlinks(dev);    //dev与class软链接创建
        if (error)
            goto SymlinkError;
        error = device_add_attrs(dev);    //添加属性
        if (error)
            goto AttrsError;
        error = bus_add_device(dev);    //将设备添加到总线上,创建dev与bus间的软链接
        if (error)
            goto BusError;
        error = dpm_sysfs_add(dev);        //增加dev下的power属性集合
        if (error)
            goto DPMError;
        device_pm_add(dev);
    
        if (MAJOR(dev->devt)) {        //主设备号存在
            error = device_create_file(dev, &dev_attr_dev);    //添加dev属性
            if (error)
                goto DevAttrError;
    
            error = device_create_sys_dev_entry(dev);    //在/sys/dev下添加相应的软链接
            if (error)
                goto SysEntryError;
    
            devtmpfs_create_node(dev);    //在/dev下添加相应的设备节点
        }
    
        /* Notify clients of device addition.  This call must come
         * after dpm_sysfs_add() and before kobject_uevent().
         */
        if (dev->bus)
            blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                             BUS_NOTIFY_ADD_DEVICE, dev);
    
        kobject_uevent(&dev->kobj, KOBJ_ADD);    //kobject发布KOBJ_ADD消息到用户空间
        bus_probe_device(dev);        //为device寻找合适的驱动
        if (parent)
            klist_add_tail(&dev->p->knode_parent,
                       &parent->p->klist_children);    //如果父节点存在,将挂入到klist_children链表
    
        if (dev->class) {    //如果device所属的class存在
            mutex_lock(&dev->class->p->mutex);
            /* tie the class to the device */
            klist_add_tail(&dev->knode_class,
                       &dev->class->p->klist_devices);    //节点插入链表
    
            /* notify any interfaces that the device is here */
            list_for_each_entry(class_intf,
                        &dev->class->p->interfaces, node)
                if (class_intf->add_dev)
                    class_intf->add_dev(dev, class_intf);
            mutex_unlock(&dev->class->p->mutex);
        }
    done:
        put_device(dev);    //减少device的引用计数
        return error;
     SysEntryError:
        if (MAJOR(dev->devt))
            device_remove_file(dev, &dev_attr_dev);
     DevAttrError:
        device_pm_remove(dev);
        dpm_sysfs_remove(dev);
     DPMError:
        bus_remove_device(dev);
     BusError:
        device_remove_attrs(dev);
     AttrsError:
        device_remove_class_symlinks(dev);
     SymlinkError:
        device_remove_file(dev, &dev_attr_uevent);
     attrError:
        kobject_uevent(&dev->kobj, KOBJ_REMOVE);
        glue_dir = get_glue_dir(dev);
        kobject_del(&dev->kobj);
     Error:
        cleanup_glue_dir(dev, glue_dir);
    parent_error:
        put_device(parent);
    name_error:
        kfree(dev->p);
        dev->p = NULL;
        goto done;
    }

    函数device_add()用于将dev添加到设备驱动模型中去,它先调用get_device()来增加dev的引用计数,然后调用device_private_init()进行dev->p的分配和初始化,调用dev_set_name()对dev的名字进行设置,接下来,要做的是准备将dev添加到sysfs设备文件系统中去,首先是调用get_device()增加对paren的引用计数(无论是直接挂在parent下还是通过一个类层挂在parent下都要增加parent的引用计数),然后调用get_device_parent()找到实际要加入的父kobject,并调用kobject_add()将dev->kobj加入到dev->kobj.parent的层次结构中去,接下来是完成属性和属性集合的添加,调用device_create_file()添加uevent属性文件,然后调用device_add_class_symlinks()在dev下创建一个软链接subsystem,指向相对应的class,然后继续调用device_add_attrs()添加属性和属性集合,调用bus_add_device()添加设备的总线属性,在dev与bus之间创建软链接,并将dev挂入到总线的设备链表中去,dpm_sysfs_add()用于增加dev下的power属性集合,调用device_pm_add()将设备添加到dpm_list链表中去。如果设备被分配了主设备号,调用device_create_file()添加dev属性文件,然后调用device_create_sys_dev_entry()在/sys/dev下创建相应的软链接,调用devtmpfs_create_node()在/dev下添加对应的设备节点文件。函数开始调用kobject_uevent()向用户空间发布KOBJ_ADD消息通知,并调用bus_probe_device()为设备探测寻找合适的驱动程序,如果设备有父节点的话,则把dev->p->knode_parent挂入到parent->p->klist_children链表中,如果设备有所属的class,则将dev->knode_class挂入class->p>class_devices上,并调用可能的类设备接口add_dev()函数,对于直接在bus上的设备来讲,可以调用bus_probe_device()来查找驱动程序,但是不与bus直接接触的设备,则靠class来去寻找驱动,便使用了class_interface内的add_dev()方式,函数最后调用put_device()减少在开头增加的引用计数并返回。

    /**
     * device_unregister - unregister device from system.
     * @dev: device going away.
     *
     * We do this in two parts, like we do device_register(). First,
     * we remove it from all the subsystems with device_del(), then
     * we decrement the reference count via put_device(). If that
     * is the final reference count, the device will be cleaned up
     * via device_release() above. Otherwise, the structure will
     * stick around until the final reference to the device is dropped.
     */
    void device_unregister(struct device *dev)
    {
        pr_debug("device: '%s': %s
    ", dev_name(dev), __func__);
        device_del(dev);
        put_device(dev);
    }

    有设备注册函数,肯定也有设备注销函数,device_unregister()函数实现的功能为将dev从系统中注销,并减少创建时产生的引用计数,当引用计数为0时,将销毁dev。

    /**
     * device_del - delete device from system.
     * @dev: device.
     *
     * This is the first part of the device unregistration
     * sequence. This removes the device from the lists we control
     * from here, has it removed from the other driver model
     * subsystems it was added to in device_add(), and removes it
     * from the kobject hierarchy.
     *
     * NOTE: this should be called manually _iff_ device_add() was
     * also called manually.
     */
    void device_del(struct device *dev)
    {
        struct device *parent = dev->parent;
        struct kobject *glue_dir = NULL;
        struct class_interface *class_intf;
    
        /* Notify clients of device removal.  This call must come
         * before dpm_sysfs_remove().
         */
        if (dev->bus)
            blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                             BUS_NOTIFY_DEL_DEVICE, dev);
    
        dpm_sysfs_remove(dev);    //将sysfs下的power属性集合移除
        if (parent)            //如果存在父节点
            klist_del(&dev->p->knode_parent);    //将设备节点从父节点链表中移除
        if (MAJOR(dev->devt)) {            //如果分配了主设备号
            devtmpfs_delete_node(dev);        //将/dev下的设备节点文件移除
            device_remove_sys_dev_entry(dev);    ///sys/dev下的软链接取消
            device_remove_file(dev, &dev_attr_dev);    //将属性文件移除
        }
        if (dev->class) {
            device_remove_class_symlinks(dev);
    
            mutex_lock(&dev->class->p->mutex);
            /* notify any interfaces that the device is now gone */
            list_for_each_entry(class_intf,
                        &dev->class->p->interfaces, node)
                if (class_intf->remove_dev)
                    class_intf->remove_dev(dev, class_intf);
            /* remove the device from the class list */
            klist_del(&dev->knode_class);
            mutex_unlock(&dev->class->p->mutex);
        }
        device_remove_file(dev, &dev_attr_uevent);    //移除uevent属性文件
        device_remove_attrs(dev);    //属性及属性集合移除
        bus_remove_device(dev);        //总线上移除设备
        device_pm_remove(dev);        //将dev从dpm_list中移除
        driver_deferred_probe_del(dev);        //驱动移除
        device_remove_properties(dev);
        device_links_purge(dev);
    
        /* Notify the platform of the removal, in case they
         * need to do anything...
         */
        if (platform_notify_remove)
            platform_notify_remove(dev);
        if (dev->bus)
            blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
                             BUS_NOTIFY_REMOVED_DEVICE, dev);
        kobject_uevent(&dev->kobj, KOBJ_REMOVE);    //kobject发布KOBJ_REMOVE消息到用户空间
        glue_dir = get_glue_dir(dev);
        kobject_del(&dev->kobj);    //将内嵌的kobj从层次结构中移除
        cleanup_glue_dir(dev, glue_dir);
        put_device(parent);        //父节点引用计数减1操作
    }

    函数device_del()是与device_add()相对的函数,device_add()将设备添加到系统中,device_del()则是将设备从系统中移除,包括了将dev从设备驱动模型的各种klist链表中进行脱离,又将dev从sysfs的各个地方创建的文件进行删除的工作。

    static struct device *prev_device(struct klist_iter *i)    //返回前一个设备
    {
        struct klist_node *n = klist_prev(i);
        struct device *dev = NULL;
        struct device_private *p;
    
        if (n) {
            p = to_device_private_parent(n);//返回device_private结构体的首地址
            dev = p->device;//将struct device结构体地址返回
        }
        return dev;
    }
    
    static struct device *next_device(struct klist_iter *i)
    {
        struct klist_node *n = klist_next(i);
        struct device *dev = NULL;
        struct device_private *p;
    
        if (n) {
            p = to_device_private_parent(n);
            dev = p->device;
        }
        return dev;
    }

    内部函数prev_device()和next_device()用于device的klist的链表遍历,prev_device()将返回前一个设备,next_device()将返回下一个设备。

    /**
     * device_get_devnode - path of device node file
     * @dev: device
     * @mode: returned file access mode
     * @uid: returned file owner
     * @gid: returned file group
     * @tmp: possibly allocated string
     *
     * Return the relative path of a possible device node.
     * Non-default names may need to allocate a memory to compose
     * a name. This memory is returned in tmp and needs to be
     * freed by the caller.
     */
    const char *device_get_devnode(struct device *dev,
                       umode_t *mode, kuid_t *uid, kgid_t *gid,
                       const char **tmp)
    {
        char *s;
    
        *tmp = NULL;
    
        /* the device type may provide a specific name */
        if (dev->type && dev->type->devnode)
            *tmp = dev->type->devnode(dev, mode, uid, gid);
        if (*tmp)
            return *tmp;
    
        /* the class may provide a specific name */
        if (dev->class && dev->class->devnode)
            *tmp = dev->class->devnode(dev, mode);
        if (*tmp)
            return *tmp;
    
        /* return name without allocation, tmp == NULL */
        if (strchr(dev_name(dev), '!') == NULL)
            return dev_name(dev);
    
        /* replace '!' in the name with '/' */
        s = kstrdup(dev_name(dev), GFP_KERNEL);
        if (!s)
            return NULL;
        strreplace(s, '!', '/');
        return *tmp = s;
    }

    函数device_get_devnode()用于返回设备的路径名。

    /**
     * device_for_each_child - device child iterator.
     * @parent: parent struct device.
     * @fn: function to be called for each device.
     * @data: data for the callback.
     *
     * Iterate over @parent's child devices, and call @fn for each,
     * passing it @data.
     *
     * We check the return of @fn each time. If it returns anything
     * other than 0, we break out and return that value.
     */
    int device_for_each_child(struct device *parent, void *data,
                  int (*fn)(struct device *dev, void *data))
    {
        struct klist_iter i;
        struct device *child;
        int error = 0;
    
        if (!parent->p)
            return 0;
    
        klist_iter_init(&parent->p->klist_children, &i);//迭代器初始化,从链表头开始
        while ((child = next_device(&i)) && !error)    //正序遍历klist_children链表
            error = fn(child, data);
        klist_iter_exit(&i);
        return error;
    }
    
    int device_for_each_child_reverse(struct device *parent, void *data,
                      int (*fn)(struct device *dev, void *data))
    {
        struct klist_iter i;
        struct device *child;
        int error = 0;
    
        if (!parent->p)
            return 0;
    
        klist_iter_init(&parent->p->klist_children, &i);
        while ((child = prev_device(&i)) && !error)    //逆序遍历klist_children链表
            error = fn(child, data);
        klist_iter_exit(&i);
        return error;
    }
    
    struct device *device_find_child(struct device *parent, void *data,
                     int (*match)(struct device *dev, void *data))
    {
        struct klist_iter i;
        struct device *child;
    
        if (!parent)
            return NULL;
    
        klist_iter_init(&parent->p->klist_children, &i);
        while ((child = next_device(&i)))
            if (match(child, data) && get_device(child))
                break;
        klist_iter_exit(&i);
        return child;
    }

    在上面的函数都是对设备链表的遍历,device_for_each_child()函数和device_for_each_child_reverse()函数对父设备下的子设备进行遍历,并都调用一个特定的函数fn()进行处理,device_find_child()函数则是查找特定的子设备,查找使用特定match()函数进行匹配。

    接下来,继续分析动态创建struct device的方法,其原理和kobject和kset的动态创建类似:

    static void device_create_release(struct device *dev)
    {
        pr_debug("device: '%s': %s
    ", dev_name(dev), __func__);
        kfree(dev);
    }
    
    static struct device *
    device_create_groups_vargs(struct class *class, struct device *parent,
                   dev_t devt, void *drvdata,
                   const struct attribute_group **groups,
                   const char *fmt, va_list args)
    {
        struct device *dev = NULL;
        int retval = -ENODEV;
    
        if (class == NULL || IS_ERR(class))//判断class指针是否有效
            goto error;
    
        dev = kzalloc(sizeof(*dev), GFP_KERNEL);//为dev动态分配内存
        if (!dev) {
            retval = -ENOMEM;
            goto error;
        }
    
        device_initialize(dev);//设备初始化
        dev->devt = devt;
        dev->class = class;
        dev->parent = parent;
        dev->groups = groups;
        dev->release = device_create_release;
        dev_set_drvdata(dev, drvdata);
    
        retval = kobject_set_name_vargs(&dev->kobj, fmt, args);//设置kobject的name
        if (retval)
            goto error;
    
        retval = device_add(dev);//将设备添加到sysfs层次系统
        if (retval)
            goto error;
    
        return dev;
    
    error:
        put_device(dev);
        return ERR_PTR(retval);//将异常指针返回
    }
    
    /**
     * device_create_vargs - creates a device and registers it with sysfs
     * @class: pointer to the struct class that this device should be registered to
     * @parent: pointer to the parent struct device of this new device, if any
     * @devt: the dev_t for the char device to be added
     * @drvdata: the data to be added to the device for callbacks
     * @fmt: string for the device's name
     * @args: va_list for the device's name
     *
     * This function can be used by char device classes.  A struct device
     * will be created in sysfs, registered to the specified class.
     *
     * A "dev" file will be created, showing the dev_t for the device, if
     * the dev_t is not 0,0.
     * If a pointer to a parent struct device is passed in, the newly created
     * struct device will be a child of that device in sysfs.
     * The pointer to the struct device will be returned from the call.
     * Any further sysfs files that might be required can be created using this
     * pointer.
     *
     * Returns &struct device pointer on success, or ERR_PTR() on error.
     *
     * Note: the struct class passed to this function must have previously
     * been created with a call to class_create().
     */
    struct device *device_create_vargs(struct class *class, struct device *parent,
                       dev_t devt, void *drvdata, const char *fmt,
                       va_list args)
    {
        return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
                          fmt, args);
    }
    
    struct device *device_create(struct class *class, struct device *parent,
                     dev_t devt, void *drvdata, const char *fmt, ...)
    {
        va_list vargs;
        struct device *dev;
    
        va_start(vargs, fmt);
        dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
        va_end(vargs);
        return dev;
    }
    
    struct device *device_create_with_groups(struct class *class,
                         struct device *parent, dev_t devt,
                         void *drvdata,
                         const struct attribute_group **groups,
                         const char *fmt, ...)
    {
        va_list vargs;
        struct device *dev;
    
        va_start(vargs, fmt);
        dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
                         fmt, vargs);
        va_end(vargs);
        return dev;
    }

    在上面代码中,device_create_release()和device_create_groups_vargs()属于两个内部的静态函数,第一个函数用于释放device分配的内核空间,由于dev是动态分配的,而第二个函数则是用来动态创建一个device,函数首先对传入的class进行判断,然后对device进行内存分配,分配成功后就是开始调用device_initialize()对设备初始化,并手动对device的一些成员进行赋值,然后调用kobject_set_name_vargs()对device中嵌入的kobject进行名称设置,最后,则是调用device_add()函数将动态创建的device添加到sysfs层次系统,而device_create_vargs()、device_create()和device_create_with_groups()都是对device_create_groups_vargs()的进一步封装,device_create()和device_create_with_groups()的区别在于创建的时候是否要创建device的组属性文件。

    static int __match_devt(struct device *dev, const void *data)
    {
        const dev_t *devt = data;
    
        return dev->devt == *devt;//设备号匹配
    }
    
    /**
     * device_destroy - removes a device that was created with device_create()
     * @class: pointer to the struct class that this device was registered with
     * @devt: the dev_t of the device that was previously registered
     *
     * This call unregisters and cleans up a device that was created with a
     * call to device_create().
     */
    void device_destroy(struct class *class, dev_t devt)
    {
        struct device *dev;
    
        dev = class_find_device(class, NULL, &devt, __match_devt);//在class下寻找设备
        if (dev) {
            put_device(dev);//减少引用计数
            device_unregister(dev);//注销设备
        }
    }

    device_create()用于动态创建一个设备,而device_destroy()函数则用来销毁一个device_create()创建出来的设备,__match_devt()属于内部的静态函数,用于class_find_device()函数寻找需要销毁的device,主要是通过设备号进行匹配而寻找,之所以需要使用put_device()减少引用计数,是因为使用class_find_device()中调用了get_device()增加了引用计数。

    int device_rename(struct device *dev, const char *new_name)
    {
        struct kobject *kobj = &dev->kobj;
        char *old_device_name = NULL;
        int error;
    
        dev = get_device(dev);
        if (!dev)
            return -EINVAL;
    
        dev_dbg(dev, "renaming to %s
    ", new_name);
    
        old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
        if (!old_device_name) {
            error = -ENOMEM;
            goto out;
        }
    
        if (dev->class) {
            error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
                             kobj, old_device_name,
                             new_name, kobject_namespace(kobj));
            if (error)
                goto out;
        }
    
        error = kobject_rename(kobj, new_name);
        if (error)
            goto out;
    
    out:
        put_device(dev);
    
        kfree(old_device_name);
    
        return error;
    }

    函数device_rename()是当设备在sysfs中注册后,用来改变设备的名称用的,首先改变/sys/class目录下的软链接的名称,然后使用kobject_rename()将device下嵌入的kobject进行重新命名。

    /**
     * device_shutdown - call ->shutdown() on each device to shutdown.
     */
    void device_shutdown(void)
    {
        struct device *dev, *parent;
    
        spin_lock(&devices_kset->list_lock);
        /*
         * Walk the devices list backward, shutting down each in turn.
         * Beware that device unplug events may also start pulling
         * devices offline, even as the system is shutting down.
         */
        while (!list_empty(&devices_kset->list)) {
            dev = list_entry(devices_kset->list.prev, struct device,
                    kobj.entry);
    
            /*
             * hold reference count of device's parent to
             * prevent it from being freed because parent's
             * lock is to be held
             */
            parent = get_device(dev->parent);
            get_device(dev);
            /*
             * Make sure the device is off the kset list, in the
             * event that dev->*->shutdown() doesn't remove it.
             */
            list_del_init(&dev->kobj.entry);
            spin_unlock(&devices_kset->list_lock);
    
            /* hold lock to avoid race with probe/release */
            if (parent)
                device_lock(parent);
            device_lock(dev);
    
            /* Don't allow any more runtime suspends */
            pm_runtime_get_noresume(dev);
            pm_runtime_barrier(dev);
    
            if (dev->class && dev->class->shutdown_pre) {
                if (initcall_debug)
                    dev_info(dev, "shutdown_pre
    ");
                dev->class->shutdown_pre(dev);
            }
            if (dev->bus && dev->bus->shutdown) {
                if (initcall_debug)
                    dev_info(dev, "shutdown
    ");
                dev->bus->shutdown(dev);
            } else if (dev->driver && dev->driver->shutdown) {
                if (initcall_debug)
                    dev_info(dev, "shutdown
    ");
                dev->driver->shutdown(dev);
            }
    
            device_unlock(dev);
            if (parent)
                device_unlock(parent);
    
            put_device(dev);
            put_device(parent);
    
            spin_lock(&devices_kset->list_lock);
        }
        spin_unlock(&devices_kset->list_lock);
    }

    函数device_shutdown()用来关闭sysfs上的每个设备,它在系统关闭时才会进行调用,在函数内,使用了devices_kset这个顶层kset,所在的目录为/sys/devices,因此,函数调用会遍历到注册的到sysfs上的每个设备,调用设备相应的总线或驱动定义的shutdown()函数,每个设备虽然可以有不同的parent,但是kset还是一样的,当在调用kobject_add()函数时,将devices_kset这个kset->kobj设置成parent,那么新添加的kobject就会挂在/sys/devices顶层目录下,例如virtual目录等。

    4、小结

    在内核中,struct device结构体的实现非常地复杂,它是Linux内核设备驱动模型的基础,为了适应越来越复杂的情景,以及提高设备的驱动性能,其实现将会越来越复杂,对其分析点到为止。

    参考:

    《LINUX设备驱动程序(第三版)》

    https://blog.csdn.net/qb_2008/article/details/6847133

    https://blog.csdn.net/abo8888882006/article/details/5424363

  • 相关阅读:
    appdata文件夹有什么用途?C盘appdata可以删除吗?
    白话讲MyIsam和InnoDB的区别
    MVC&&MVP
    计算机程序的思维逻辑- 函数调用的基本原理
    猫狗收养所
    博客学习分类
    Android之操作SQLite
    总结---20160508
    对栈元素排序
    集合栈
  • 原文地址:https://www.cnblogs.com/Cqlismy/p/11507216.html
Copyright © 2011-2022 走看看