原题的话,由于保证了wi<wi+1,是一个比较simple的费用流啦。
如果不保证wi递增的话,也可以有一个比较暴力的复杂度和流量相关的做法。
#include<iostream>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<queue>
#include<cstdlib>
#include<algorithm>
#define N 220000
#define M 220000
#define L 200000
#define eps 1e-7
#define inf 1e9+7
#define ll long long
using namespace std;
inline int read()
{
char ch=0;
int x=0,flag=1;
while(!isdigit(ch)){ch=getchar();if(ch=='-')flag=-1;}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
return x*flag;
}
struct edge
{
int to,nxt,flow,w;
}e[M];
int num,head[N];
inline void add(int x,int y,int w,int z)
{
e[++num]=(edge){y,head[x],w,+z};head[x]=num;
e[++num]=(edge){x,head[y],0,-z};head[y]=num;
}
queue<int>q;
bool in_queue[N];
int s,t,T[N],W[N],dis[N],pre[N],last[N],flow[N];
bool spfa()
{
for(int i=0;i<=t;i++)dis[i]=flow[i]=inf;
dis[s]=0;q.push(s);in_queue[s]=true;
while(!q.empty())
{
int x=q.front();
q.pop();in_queue[x]=false;
for(int i=head[x];i!=-1;i=e[i].nxt)
{
int to=e[i].to;
if(dis[to]>dis[x]+e[i].w&&e[i].flow)
{
dis[to]=dis[x]+e[i].w;
flow[to]=min(flow[x],e[i].flow);
pre[to]=x;last[to]=i;
if(!in_queue[to])q.push(to),in_queue[to]=true;
}
}
}
return dis[t]<inf;
}
void dfs(int x)
{
if(x==s)return;
int id=last[x];
e[id].flow-=flow[t];
e[id^1].flow+=flow[t];
dfs(pre[x]);
}
int main()
{
num=-1;memset(head,-1,sizeof(head));
int m,n;
m=read();n=read();s=n+m+1;t=n+m+2;
for(int i=1;i<=n;i++)add(i+m,t,read(),0);
for(int i=1;i<=m;i++)for(int j=1;j<=n;j++)
if(read())add(i,j+m,inf,0);
for(int i=1;i<=m;i++)
{
int k=read();
for(int j=1;j<=k;j++)T[j]=read();T[k+1]=inf;
for(int j=1;j<=k+1;j++)W[j]=read();
for(int j=1;j<=k+1;j++)add(s,i,T[j]-T[j-1],W[j]);
}
ll ans=0;
while(spfa())
{
ans+=dis[t]*flow[t];
dfs(t);
}
printf("%lld",ans);
return 0;
}