zoukankan      html  css  js  c++  java
  • 【高斯消元】兼 【期望dp】例题

    【总览】

    高斯消元基本思想是将方程式的系数和常数化为矩阵,通过将矩阵通过行变换成为阶梯状(三角形),然后从小往上逐一求解。

    如:$3X_1 + 2X_2 + 1X_3 = 3$

      $              X_2 + 2X_3 = 1$

      $2X_1 + X_3 = 0$

    化为矩阵为:--->----->----->

    然后就可以通过最后一行直接求出$X_3 = ...$,将其带回第二行,算出$X_2$,同理算出$X_1$。

    代码很好理解:

    inline void gauss(){
        int i, j, k, l;
        for(i = 1; i <= n; i++){
            l = i;
            for(j = i + 1; j <= n; j++)
                if(fabs(matrix[j][i]) > fabs(matrix[l][i])) l = j;
            if(l != i) for(j = i; j <= n + 1; j++)
                swap(matrix[i][j], matrix[l][j]);
            for(j = i + 1; j <= n; j++){
                double tmp = matrix[j][i] / matrix[i][i];
                for(k = i; k <= n + 1; k++)
                    matrix[j][k] -= matrix[i][k] * tmp;
            }
        }
        for(i = n; i >= 1; i--){
            double t = matrix[i][n + 1];
            for(j = n; j > i; j--)
                t -= ans[j] * matrix[i][j];
            ans[i] = t / matrix[i][i];
        }
    }

     高斯消元最常应用在  期望DP  中。下面是几道例题。

    期望dp讲解及例题

    【BZOJ1013】球形空间产生器sphere

    由给出的$n + 1$个坐标,可以列出 $n$个方程,剩下的模板。

    【CODE】

    #include<iostream>
    #include<cstring>
    #include<string>
    #include<cstdio>
    #include<cstdlib>
    #include<algorithm>
    #include<vector>
    #include<cmath>
    using namespace std;
    
    const int N = 20;
    double matrix[N][N], last[N], t, ans[N];
    int n;
    
    inline int read(){
        int i = 0, f = 1; char ch = getchar();
        for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
        if(ch == '-') f = -1, ch = getchar();
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            i = (i << 3) + (i << 1) + (ch -'0');
        return i * f;
    }
    
    inline void wr(int x){
        if(x < 0) putchar('-'), x = -x;
        if(x > 9) wr(x / 10);
        putchar(x % 10 + '0');
    }
    
    inline void gauss(){
        int i, j, l, k;
        for(i = 1; i <= n; i++){
            l = i;
            for(j = i + 1; j <= n; j++) 
                if(fabs(matrix[j][i]) > fabs(matrix[l][i])) l = j;
            if(l != i) for(j = i; j <= n + 1; j++)
                swap(matrix[i][j], matrix[l][j]);
            for(j = i + 1; j <= n; j++){
                double tmp = matrix[j][i] / matrix[i][i];
                for(k = i; k <= n + 1; k++) 
                    matrix[j][k] -= matrix[i][k] * tmp;
            }
        }
        for(i = n; i >= 1; i--){
            double tmp = matrix[i][n + 1];
            for(j = n; j > i; j--)
                tmp -= ans[j] * matrix[i][j];
            ans[i] = tmp / matrix[i][i];
        }
    }
    
    int main(){
        n = read();
        for(int i = 1; i <= n; i++) scanf("%lf", &last[i]);
        for(int i = 1; i <= n; i++){
            t = 0;
            for(int j = 1; j <= n; j++){
                double tmp; scanf("%lf", &tmp);
                matrix[i][j] = 2 * (tmp - last[j]);
                t += tmp * tmp - last[j] * last[j];
                last[j] = tmp;
            }
            matrix[i][n + 1] = t;
        }
        gauss();
        for(int i = 1; i <= n; i++){
            if(i < n) printf("%.3lf ", ans[i]);
            else printf("%.3lf
    ", ans[i]);
        }
        return 0;
    }

    【BZOJ3143】游走

      因为要求期望的最小值,那么走的次数多的边肯定要让花费(编号)尽可能小,所以可以先求出从每个点出发次数的期望值$E_i$,那么对于一条边而言,走这条边的期望次数就是$E_i / degree[i] + E_j / degree[j]$,只要排一遍序就好。

      求点的期望:$E_i = sum (E_{son[i]} / degree[i])$

    【code】

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<algorithm>
    #include<vector>
    #define eps 1e-10
    using namespace std;
    
    const int N = 600;
    double matrix[N][N], ans[N], ret;
    int n, m, num, degree[N];
    int st[500000], ed[500000];
    double gg[500000];
    
    inline void addEdge(const int &u, const int &v){
        degree[u]++;
        degree[v]++;
        st[++num] = u, ed[num] = v;
    }
    
    inline int read(){
        int i = 0, f = 1; char ch = getchar();
        for(; (ch < '0' || ch > '9') && ch != '-'; ch = getchar());
        if(ch == '-') f = -1, ch = getchar();
        for(; ch >= '0' && ch <= '9'; ch = getchar())
            i = (i << 3) + (i << 1) + (ch -'0');
        return i * f;
    }
    
    inline void gauss(){
        int i, j, l, k;
        for(i = 1; i <= n; i++){
            l = i;
            for(j = i + 1; j <= n; j++) 
                if(fabs(matrix[j][i]) > fabs(matrix[l][i])) l = j;
            if(l != i) for(j = i; j <= n + 1; j++)
                swap(matrix[i][j], matrix[l][j]);
            for(j = i + 1; j <= n; j++){
                double tmp = matrix[j][i] / matrix[i][i];
                for(k = i; k <= n + 1; k++) 
                    matrix[j][k] -= matrix[i][k] * tmp;
            }
        }
        for(i = n; i >= 1; i--){
            double tmp = matrix[i][n + 1];
            for(j = n; j > i; j--)
                tmp -= ans[j] * matrix[i][j];
            ans[i] = tmp / matrix[i][i];
        }
    }
    
    inline bool cmp (double a, double b){
        return a > b;
    }
    
    int main(){
        n = read(), m = read();
        for(int i = 1; i <= m; i++){
            int u = read(), v = read();
            addEdge(u, v);
        }
        int i, j;
        for(i = 1; i <= m; i++){
            matrix[st[i]][ed[i]] += 1.0 /degree[ed[i]];
            matrix[ed[i]][st[i]] += 1.0 /degree[st[i]];
        }
        for(i = 1; i <= n; i++) matrix[n][i] = 0;  
        for(i = 1; i <= n; i++) matrix[i][i] = -1.0;
        matrix[1][n + 1] = -1.0;
        gauss();
        for(i = 1; i <= m; i++)
            gg[i] = ans[st[i]] / degree[st[i]] + ans[ed[i]] / degree[ed[i]];
        sort(gg + 1, gg + m + 1, cmp);
        for(i = 1; i <= m; i++) ret += gg[i] * i;
        printf("%.3f
    ", ret);
        return 0;
    }

     【bzoj2337】XOR和路径

      学到了!看见求异或和$----->$按位计算:即一位一位的计算答案每一位上为1的期望值,这样就可以轻松统计出答案。

      每一位都要重新构造矩阵求期望,设$a[i]$表示从$i$到$n$的路径异或和(这一位)为$1$的期望概率(总是≤$1$)

      对于当前第$i + 1$位,若$(dis >> i) & 1$(这一位为1),那么要异或和为$1$,要求他从关联点异或和为$0$转移来,

      同理,若这一位为$0$,要求从$1$转移来。即:$$a[i] = sum a[son[i]](dis这一位为0) / degree[i]  + sum a[son[i]](dis这一位为1) / degree[i]$$。

    【code】

    #include<iostream>
    #include<cstring>
    #include<string>
    #include<algorithm>
    #include<cstdio>
    #include<cstdlib>
    #include<cmath>
    using namespace std;
    
    const int N = 105, M = 10005;
    int n, m;
    int ecnt, st[M << 1], ed[M << 1], len[M << 1], degree[N];
    double matrix[N][N], ans[N], ret;
    
    inline void addEdge(const int &u, const int &v, const int &l){
        st[++ecnt] = u, ed[ecnt] = v, len[ecnt] = l; degree[u]++;
        if(u != v) st[++ecnt] = v, ed[ecnt] = u, len[ecnt] = l, degree[v]++;
    }
    
    inline void gauss(){
        int i, j, k, l;
        for(i = 1; i <= n; i++){
            l = i;
            for(j = i + 1; j <= n; j++)
                if(fabs(matrix[j][i]) > fabs(matrix[l][i])) l = j;
            if(l != i) for(j = i; j <= n + 1; j++)
                swap(matrix[i][j], matrix[l][j]);
            for(j = i + 1; j <= n; j++){
                double tmp = matrix[j][i] / matrix[i][i];
                for(k = i; k <= n + 1; k++)
                    matrix[j][k] -= matrix[i][k] * tmp;
            }
        }
        for(i = n; i >= 1; i--){
            double t = matrix[i][n + 1];
            for(j = n; j > i; j--)
                t -= ans[j] * matrix[i][j];
            ans[i] = t / matrix[i][i];
        }
    }
    
    int main(){
        scanf("%d%d", &n, &m);
        int i, j, k;
        for(i = 1; i <= m; i++){
            int u, v, w; scanf("%d%d%d", &u, &v, &w);
            addEdge(u, v, w);
        }
        for(i = 0; i <= 30; i++){
            memset(matrix, 0, sizeof matrix);
            memset(ans, 0, sizeof ans);
            for(j = 1; j <= n; j++) matrix[j][j] = 1;
            for(j = 1; j <= ecnt; j++){
                int l = len[j], u = st[j], v = ed[j];
                if(u == n) continue;
                if((l >> i) & 1){
                    matrix[u][v] += 1.0 / degree[u];
                    matrix[u][n + 1] += 1.0 / degree[u];
                }
                else matrix[u][v] -= 1.0 / degree[u];
            }
            gauss();
            ret += ans[1] * (1 << i);
        }
        printf("%.3f
    ", ret);
        return 0;
    }
  • 相关阅读:
    二叉树的节点删除
    PHP开启错误日志详细说明
    jsonpath模块
    Gunicorn-配置详解
    Vmware创建虚拟机步骤说明,详细配置解释
    Python multiprocessing使用详解
    Python定时任务框架apscheduler
    Access-Control-Allow-Origin跨域解决及详细介绍
    web安全:x-content-type-options头设置
    sqlalchemy的基本操作大全
  • 原文地址:https://www.cnblogs.com/CzYoL/p/7226719.html
Copyright © 2011-2022 走看看