BZOJ 4555
一道模板题。
第二类斯特林数有公式:
$$S(n, m) = frac{1}{m!}sum_{i = 0}^{m}(-1)^iinom{m}{i}(m - i)^n$$
考虑它的组合意义:$S(n, m)$表示$n$个不相同的小球放到$m$个相同的盒子里而且不能有空盒的方案数。
我们枚举空盒有$i$个,然后进行容斥。因为盒子没有区别,所以最后得到的值还要除以$m!$。
本题要求:
$$sum_{i = 0}^{n}sum_{j = 0}^{i}S(i, j)*2^j*(j!)$$
$$=sum_{j = 0}^{n}2^j*(j!)sum_{i = 0}^{n}S(i, j)$$
$$=sum_{j = 0}^{n}2^j*(j!)sum_{i = 0}^{n}frac{1}{j!}sum_{k = 0}^{j}(-1)^kinom{j}{k}(j - k) ^ i$$
$$=sum_{j = 0}^{n}2^jsum_{i = 0}^{n}sum_{k = 0}^{j}(-1)^kfrac{j!}{k!(j - k)!}*(j - k)^i$$
$$=sum_{j = 0}^{n}2^j*(j!)sum_{k = 0}^{j}frac{(-1^k)}{k!} * frac{sum_{i = 0}^{n}(j - k)^i}{(j - k)!}$$
记$f(i) = frac{(-1^k)}{k!}$,$g(i) = frac{sum_{j = 0}^{n}i^j}{(i)!}$,
因为$S(0, 0) = (-1)^0 * 1 * 0^0 = 1$,所以记$g(0) = 1$,$g(1) = n + 1$,剩下代入等比数列求和公式。
那么原式化为
$$sum_{i = 0}^{n}2^i*(i!)(f*g)(i)$$
做一遍$NTT$就好了。
时间复杂度$O(nlogn)$。
Code:
#include <cstdio> #include <cstring> using namespace std; typedef long long ll; const int N = 3e5 + 5; const ll P = 998244353LL; int n, lim = 1, pos[N]; ll f[N], g[N], fac[N], inv[N], bin[N]; template <typename T> inline void swap(T &x, T &y) { T t = x; x = y; y = t; } template <typename T> inline void inc(T &x, T y) { x += y; if(x >= P) x -= P; } inline ll fpow(ll x, ll y) { ll res = 1LL; for (; y > 0; y >>= 1) { if (y & 1) res = res * x % P; x = x * x % P; } return res; } inline void prework() { int l = 0; for (; lim <= n * 2; ++l, lim <<= 1); for (int i = 0; i < lim; i++) pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1)); } inline void ntt(ll *c, int opt) { for (int i = 0; i < lim; i++) if (i < pos[i]) swap(c[i], c[pos[i]]); for (int i = 1; i < lim; i <<= 1) { ll wn = fpow(3, (P - 1) / (i << 1)); if(opt == -1) wn = fpow(wn, P - 2); for (int len = i << 1, j = 0; j < lim; j += len) { ll w = 1LL; for (int k = 0; k < i; k++, w = w * wn % P) { ll x = c[j + k], y = w * c[j + k + i] % P; c[j + k] = (x + y) % P, c[j + k + i] = (x - y + P) % P; } } } if (opt == -1) { ll invP = fpow(lim, P - 2); for (int i = 0; i < lim; i++) c[i] = c[i] * invP % P; } } int main() { scanf("%d", &n); bin[0] = fac[0] = 1LL; for (int i = 1; i <= n; i++) { fac[i] = fac[i - 1] * i % P; bin[i] = bin[i - 1] * 2LL % P; } inv[n] = fpow(fac[n], P - 2); for (int i = n - 1; i >= 0; i--) inv[i] = inv[i + 1] * (i + 1) % P; /* for (int i = 0; i <= n; i++) printf("%lld%c", inv[i] * fac[i] % P, i == n ? ' ' : ' '); */ for (int i = 0; i <= n; i++) { f[i] = ((i & 1) ? (-1LL) : (1LL)) * inv[i] % P; if(f[i] < 0) f[i] += P; if(i == 0) g[i] = 1LL; else if (i == 1) g[i] = n + 1; else g[i] = (fpow(i, n + 1) - 1 + P) % P * fpow(i - 1, P - 2) % P; g[i] = g[i] * inv[i] % P; } prework(); ntt(f, 1), ntt(g, 1); for (int i = 0; i < lim; i++) f[i] = f[i] * g[i] % P; ntt(f, -1); ll ans = 0LL; for (int i = 0; i <= n; i++) inc(ans, bin[i] * fac[i] % P * f[i] % P); printf("%lld ", ans); return 0; }